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1 Abstract 
Many streams and lakes within the Upper Wisconsin River are impaired due to excessive 
sediment and nutrient loading. To address water quality impairments in the Wisconsin River 
Basin, Total Maximum Daily Load (TMDL) allocations will be developed for sediment and 
phosphorus. A computer simulation model using the Soil and Water Assessment Tool 
(SWAT) was developed to identify the significant sources of sediment and phosphorus loads 
in the basin. This document describes all facets of model development. Model development 
for this project was an extensive effort that included: 1) configuring the model to simulate 
hydrology and water chemistry based on landcover, soils, topography, weather, and 
wastewater discharge among other drivers 2) compiling observed streamflow and 
estimating pollutant loads at various sites for the purposes of calibration 3) calibrating and 
validating the model by adjusting model parameters and 4) developing independent sub-
models to simulate processes that are not represented well in SWAT. 
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2 Introduction 

2.1 Background 
The Wisconsin River Basin (WRB) Total Maximum Daily Load (TMDL) project requires the 
calculation of a TMDL scenario that results in all streams and lakes within the project area 
meeting water quality standards for total suspended solids (TSS) and total phosphorus 
(TP). The TMDL scenario will be used to calculate allocations that result in achieving these 
standards. This report describes the development of the model used to locate and quantify 
sources of these pollutants in the basin.  The process of translating model output into 
TMDL allocations is not described in this report.  

There are two distinctly different types of pollutant sources that contribute pollutants to 
WRB project area: wastewater continuously discharged from set points throughout the 
stream system (point sources), and diffuse sources of pollutants intermittently delivered 
from the landscape to waterways via runoff (non-point sources).  

For the purpose of simulating pollution loads under existing conditions, point-source loads 
are estimated using TSS and TP concentration monitoring data, sampled according to 
Wisconsin Pollutant Discharge Elimination System (WPDES) permit requirements, together 
with flow data.   Together this information allows us to accurately estimation the daily load 
associated with each permit. 

Non-point source loads are estimated using a simulation model that predicts the daily load 
delivered to each stream, based on factors associated with runoff, such as weather, 
landcover and land-management practices, landscape topography, and soil characteristics, 
among others. Estimates of non-point-source loads are generally less accurate than their 
point-source counterparts because monitoring diffuse sources similarly to how permitted 
dischargers are monitored is infeasible over large extents. Rather, the simulation model 
makes assumptions about non-point source runoff based on transferrable scientific 
understanding, routes the runoff and pollutants through the stream system, and compares 
the resulting simulated loads to monitoring data collected at downstream sites. 

The simulated point and non-point source loads are used to determine the magnitude, 
source and location of existing pollutant loads.  In order to be able to use this information 
to develop TMDL allocations, the simulation model must be able to segregate point and 
non-point sources, and for non-point sources specifically, segregate uncontrollable (i.e. 
natural or background) daily loads from controllable ones (i.e., anthropogenic). The Soil 
and Water Assessment Tool (SWAT) model contains equations that fulfill these 
requirements. The SWAT model was chosen to simulate the majority of both point and non-
point source daily load delivery, with the exception of urban areas, which were simulated 
using the Source Loading and Management Model for Windows (WinSLAMM). 

2.2 SWAT 
The SWAT model is the product of over 30 years of efforts to accurately simulate large-
scale watershed hydrology using field-scale scientific findings. It has been used to simulate 
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watersheds all across the globe due to its ability to simulate diverse landscapes, its openly 
published source code, and the ability of users to control a large degree of detail within the 
default model. The primary outputs of a SWAT model are quantities (streamflow or water 
yield) and qualities (masses of physical and chemical components concentrated in water) 
of water at selected sites at a daily time step. 

At its core, SWAT relies on field-level units that deliver water, sediment, and chemicals to 
streams. The unit in SWAT is referred to as the Hydrologic Response Unit (HRU).  Each 
SWAT HRU is defined by a discrete combination of landcover, soil, and slope 
characteristics. Within each HRU, the user defines what crop is growing, if and how crops 
are managed (e.g., fertilizer applied to an agricultural crop), how the crop responds to its 
direct environment and management (weather, soil, and slope), and how water responds 
(both surface and groundwater) to the combination of plant growth processes and the 
direct physical environment (with some exceptional equations such as those used to 
simulate hydrologic response within urban areas). 

SWAT HRUs are aggregated into subbasins. Subbasins collect water and other pollutants 
generated by each of its HRUs, and either routes it through small surface flow paths 
(“tributaries”), or through sub-surface flow, which SWAT separates into interflow, shallow 
aquifer, and deep aquifer components. 

The combination of tributary and groundwater flow is then delivered to SWAT “reaches”. 
SWAT reaches represent streams and rivers. The primary properties of reaches in SWAT 
are geometric (e.g., length, width, depth, and gradient), however recent advances in SWAT 
allow users to simulate other water-quality processes within reaches, such as the 
deposition, re-suspension, and transformation of physical and chemical constituents 
though the alteration of water chemistry within reaches was limited within the WRB SWAT 
model. Although SWAT has rudimentary tools for simulating limnological processes, due to 
the scale and scope of this project, these tools were not used in favor of exporting SWAT 
output to more flexible lake models.  

2.3 Study Area 
The WRB covers 23,000 km2, mostly within the northcentral region of Wisconsin, with a 
small area in Michigan, where the watershed boundary extends into the Upper Peninsula 
(Figure 1). The watershed associated with this study ends at outlet of Lake Wisconsin. 
Below Lake Wisconsin, there are currently no TP or TSS impairments on its main stem, the 
Wisconsin River runs the last third of its course to join the Mississippi River in 
southwestern Wisconsin. 

The wide range of geologic formations in the WRB means there is a correspondingly wide 
range of hydrologic conditions. Much of this variation is attributable to the most recent 
glaciation. The northern region of the project area was covered by the Wisconsin Valley 
and Langlade lobes of the Laurentide Ice Sheet, and is therefore not well drained. Much of 
this region consists of wetlands and internally drained lakes or chains of lakes. The eastern 
edge of the watershed exhibits highly porous aggregate material, and internally drained 
landforms that are reminiscent of the terminus of the Green Bay glacial lobe. The central 
region is characterized by highly porous sands and a very flat landscape that is reminiscent 
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of weathering from Glacial Lake Wisconsin (not to be confused with the present-day Lake 
Wisconsin). Finally, the southwestern corner of the study area, commonly referred to as 
the “driftless area”—due to the absence of glacial “drift”—is the only region not impacted 
by recent glaciation; here the landscape is well drained with steep slopes and constrained 
valleys. 

The main stem of the Wisconsin River supports a number of large industrial facilities that 
discharge wastewater directly to the river. Although there is some variety in the type 
industry that discharges to the Wisconsin River, the largest sectors are pulp and paper, and 
cheese processing.  The majority of land in the project area is natural—forest, wetlands, 
and grasslands constitute 75%—or managed for agriculture (19%).  The largest cities are 
Wausau, Stevens Point, and Marshfield with populations of 39,000, 26,600, and 18,600 
respectively.  

3 Basic Model Configuration 
This section details the basic configuration and data processing steps taken during the 
development of this SWAT project. 

3.1 Subbasin Delineation 
The first step of configuring a SWAT model is delineating subbasins (Figure 2). Hydrologic 
and regulatory transitions were used to guide the placement of TMDL subbasin transitions. 
TMDL subbasin transitions were identified: 

1. to address specific water quality impairments where local water quality does not meet 
codified standards. Consideration was given to streams that are likely to be impaired, 
but where sufficient monitoring data do not currently exist. 

2. near point source outfalls. Delineations were not required to be at precisely the 
location of the outfall; if we could assume that streamflow does not significantly 
increase between the discharge location and the next downstream subbasin division, it 
was not necessary to further subdivide the subbasin at the discharge location. 

3. at locations where water quantity and quality were measured during the model period 
for use in model calibration. 

4. at major transitions of water quality standards, for instance at river impoundments 
that receive lake criteria. 

5. at major hydrologic transitions such as the confluence of two large streams or where 
there are significant changes in landuse/landcover. 

Beyond the above criteria, we made an effort to subdivide the remaining subbasins so that 
the resulting subbasins are of relatively homogenous area—having similarly sized 
subbasins results in more accurate timing of peak flows during runoff events. 

After the location of subbasin outfalls were identified, we delineated the contributing area 
upstream of each outfall. Although ArcSWAT can automatically delineate model subbasins, 
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because of our specific reasons for creating subbasins outlined above, we manually created 
SWAT subbasins by aggregating the Wisconsin Hydrography Dataset Plus (WHDPlus) 
dataset (Diebel, Menuz, & Ruesch, 2013), which contains sub-watershed delineations 
within the Hydrologic Unit Code (HUC) 12 basins.  HUC12 basins are standard watersheds 
created and maintained by the United States Geologic Survey [USGS]). We delineated 337 
subbasins with an average size of 69 km2 (standard deviation = 80 km2); larger subbasins 
were located in areas with fewer water quality impairments and point sources. This size is 
smaller than the average HUC12 watershed (84 km2), which is the scale at which TMDL 
projects are often implemented. 

The Wisconsin River is an unusually large TMDL project area. Consequently, much of the 
point and non-point load reduction efforts will occur as nested HUC12 scale projects within 
the overall TMDL framework.  

3.2 Land Cover and Land Management 
The accuracy of landcover and land management is perhaps one of the most critical 
components of a SWAT model. An accurate representation of agriculture is particularly 
important in the WRB, where agriculture covers nearly 20% of the watershed and 
agricultural runoff contributes the majority of the phosphorus and sediment load in many 
of its tributary watersheds (Section 5.2). The SWAT model provides the opportunity to 
distinguish between land cover and land management. One of SWAT’s strengths, and one of 
the primary reasons it was selected for the WRB TMDL modeling effort, is its ability to 
model variability in land management on a daily time step.  

The objective of this effort was to develop and implement a methodology to define 
agricultural management by integrating geospatial data and analysis, local knowledge from 
county land and water conservation staff, private agronomists, and field data. The 
methodology was applied to agricultural landcover within the WRB. The result is a raster 
spatial layer that defines spatiotemporal variability of agricultural land management, such 
as crop rotation, tillage, and nutrient application. 

3.2.1 Land Cover (step 1) 
The basis of the composite land cover developed for the SWAT model is the United States 
Department of Agriculture (USDA) National Agricultural Statistics Service (NASS) 2011 
Cropland Data Layer (CDL) for Wisconsin (NASS 2011). The layer, originally created to 
provide agricultural information for the major crops to the USDA Agricultural Statistics 
Boards, provides a gridded data layer that defines growing-season land cover at a cell 
resolution of 900 m2 for Wisconsin using satellite imagery from a variety of satellites (NASS 
2011). The 2011 CDL was selected because that year had improved accuracy statistics 
when compared to other years, and there were no significant flooding or drought events 
within the growing season. To improve the CDL wetland definition, mainly related to the 
misclassification of forested wetlands, information from the Wisconsin Wetlands Inventory 
(WWI) was integrated into the 2011 CDL. The WWI coverage provides the geographic 
extent of wetlands that have been digitized from aerial photography, verified through 
photo interpretation, and compared against soil surveys, topographic maps, and previous 
wetland inventories (WDNR 1991). 
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To improve the landcover definition other basin-wide information was integrated into the 
2011 CDL in the following order: Wisconsin Wetlands Inventory (WWI), hand-digitized 
cranberry bogs, and conservation reserve program land (CRP). The WWI coverage 
provides the geographic extent of wetlands that have been digitized from aerial 
photography, verified through photo interpretation, and compared against soil surveys, 
topographic maps, and previous wetland inventories (WDNR 1991). The 2011 CDL was 
unable to properly capture the extent of cranberries due to the timing of the satellite 
imagery. As a result, the cranberry bog extent was digitized from Bing aerial photo 
basemaps (2011). Cranberries were not represented explicitly in the SWAT model, but 
rather set to wetland landcover so that they could be incorporated into later versions of the 
SWAT model if better information on Wisconsin cranberry management becomes available.  
The CRP land extent was captured from a 2008 USDA Common Land Unit (CLU) attribute 
defining land designated as CRP. While the CRP extent can change from year to year, the 
use of the 2008 extent provided a midpoint condition for the simulation period. 

3.2.2 Crop Rotations (step 2) 
To inform the SWAT model with spatial agricultural information, we aggregated 5 years of 
CDL layers (2008–2012) into thematic cropping rotations. The class resolution of the CDL 
was originally too fine, so crops were first aggregated together into groups of similar crops 
or crops that are often confused in the classification process (Table 1). Crop sequences 
were originally defined by Public Land Service System (PLSS) ¼-sections (approximately 
160 acres1) by choosing the majority crop within each ¼ section for each year. The 
dominant crop per ¼-section for each of the five years was concatenated together to create 
a crop sequence for each ¼-section for the time period (Figure 3). This analysis resulted in 
a five-year sequence of crops for each ¼-section which was then classified into an 
agricultural rotation type based on a set of rules. After refinements associated with local 
knowledge (Section 3.2.3), the rotations were divided into the following general types: 1) 
Dairy Rotation, 2) Cash Grain, 3) Continuous Corn, 4) Pasture/Hay, and 5) 
Potato/Vegetable. We identified the rotation type for each ¼-section’s five-year sequence 
by creating a hierarchical algorithm that binned crop rotation types based on the presence 
or absence of certain crops that were indicative of general rotation types (Table 2). Dairy 
rotations, for instance, required at least one year of corn in 5 years and at least one year of 
alfalfa/hay. The spatially identified crop rotation types provided distinct parcels to link 
with more detailed, regionally specific agricultural management data. 

Although the general crop rotation types provide more information than using a single year 
of the CDL to define agriculture in the WRB, no unified dataset exists with information 
regarding land management such as tillage, fertilization, and the timing of specific 
operations. The satellite imagery was trusted to spatially identify crops and rotation types 
better than a local expert, but local experts were trusted to inform the satellite-identified 
rotations with land management information. Local knowledge became essential as county 

                                                        
1 For ease of reporting, agricultural measurements in this section of the report are described in United States 
customary units, however because the model operates using metric units, all other quantities are described in 
metric.  
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and regional experts were brought together to create regionally-specific information at the 
quarter section level. 

3.2.3 Interviews with Local Experts (step 3) 
The crop rotation dataset described in Section 3.2.2 provides an initial assessment of 
agriculture that distinguishes crop rotational themes. However, there were still 
uncertainties in the development of the initial crop rotation rules, which were refined in 
the process of interviewing local experts (Figure 4). More importantly, the analysis fails to 
provide a complete assessment of agricultural management, as it does not ascertain 
differences in similar rotations based on variability in tillage and nutrient applications. 
These practices differ for all crop rotations types by region based on factors such as soil 
condition, slope, and regional conservation directives. Management information could only 
be found through local knowledge. 

The methodology for defining agricultural management through localized knowledge 
originated from an effort conducted in the Mead Lake Watershed in Central Wisconsin 
(Freihoefer & McGinley, 2007). In that study, they used a combination of farm surveys, 
transect surveys, land evaluations, and interviews completed by county staff. The study 
found that this process was an effective and efficient method for informing land-
management operations for a SWAT model. 

Upon completion of the initial definition of crop sequences using the CDL, meetings were 
set up with regional staff to: 1) correct the spatial definition of the sequences, and 2) 
develop underlying management schemes involving the timing of agricultural activities, 
tillage types, and rate and type of nutrient application (chemical fertilizer or manure). A set 
of interview questions was created for the regional staff along with a brief webinar 
outlining the project and the goals of the WRB TMDL team (Appendix D.1). 

The meetings were targeted towards county land and water conservationists and their 
staff, however additional expertise from individuals such as University of Wisconsin–
Extension Agricultural Agents and Natural Resources Conservation Service (NRCS) staff 
were welcome and recommended if county conservationists needed confirmation 
regarding any component of the agricultural definition. Each meeting lasted between two 
and four hours and was accompanied by a large map (approximately 3’x4’) of the dominant 
crop rotations per ¼-section (160 acres) that was identified using the CDL rules (Section 
3.2.2) set for 2008-2012. 

Some counties provided their information on a ¼-section by ¼-section grid; staff would 
reference plat books, Nutrient Management Plans (NMPs), county GIS data, and other 
information sources to get the most accurate ¼-section level management data. However, 
some counties opted to take a more generalized approach by providing percentages by 
region or conditions under which certain management types exist. For example, Marathon 
County reported that approximately 60% of dairy farmers have a “daily haul” type dairy 
rotation and the other 40% applied liquid manure—in these cases, management activities 
were applied to crop rotations randomly and proportionally across the region based on the 
given rule. Additionally, using long-term land management inventories in the Pleasant 
Valley watershed in south-central Wisconsin, we found that when corn was being grown 



 

16 
 

continuously over a 5-year period according to the CDL, it was equally likely to be a cash 
grain operation or a dairy rotation, so these two rotations were split equally and 
distributed randomly across generalized rotations from the CDL that were defined as 
“continuous corn”. 

After all interviews were complete, the land management data was digitized and refined. 
Many of the interviewees responded exactly the same (e.g., 10,000 gallons per acre of liquid 
manure was a common application rate)—these redundancies were eliminated by 
aggregating information together. In other cases, land management operations were 
thematically similar, and could therefore be aggregated together justifiably using best 
professional judgment. These aggregations were then reviewed by a panel of other WDNR 
staff, faculty from the University of Wisconsin, and private agronomists, manure haulers, 
and crop consultants during a 3-hour open-forum discussion. The agricultural management 
process was well received by the group and only minor adjustments were made to a few of 
the rotations. For example, the starter fertilizer applications were changed from 200 
pounds per acre per year to 150 pounds per acre per year. 

3.2.4 Land Cover and Management Integration (step 4) 
County staff members served as local experts on agricultural land management 
identification and refinement of the rotation rules described in Section 3.2.3, but the spatial 
extent of the crop rotations defined by the USDA CDL were assumed to provide a better 
spatial definition. The result was two separate datasets created by steps 2 and 3 requiring 
the integration of the management information provided by each county and applying it to 
the WDNR approach developed from the USDA CDL. 

The final layer integrated the interview-based land management dataset (by ¼-section) 
into the CDL-based crop rotation dataset (by 900 m2 pixel). The land management dataset 
was first converted from vector-based ¼-sections to raster files. We then generalized the 
county-specific rotations into 15 unique crop rotations (Appendix D.2).  

Due to misclassification of the CDL, the raster product resulting from the above integration 
still had issues with speckle noise. We reduced this speckle noise to avoid over-
representing agriculture. To accomplish this reduction, we excluded agricultural cells that 
fell outside of parcels defined by the CLU layer. These exclusions were replaced by values of 
neighboring cells using the ArcGIS (ESRI, 2012) expand function. We also refined pixel-
based crop rotation classifications within CLU boundaries by homogenizing pixels to the 
majority crop rotation within a CLU boundary. 

To ensure the alignment of the spatial definition of crop rotations with ¼-section land 
management information, we used a nearest neighbor approach. For example, if the CDL 
rotation analysis defined a small area of dairy rotation within an area defined by the county 
staff as a cash grain rotation, the closest dairy rotation management information would be 
applied to the CDL defined dairy rotation rather than it being overwritten as cash grain. A 
schematic of this process is provided in Figure 5. 

Finally, to ensure that no single year was weighted too heavily with a specific crop, we 
duplicated each rotation three times. However, each of the three versions was staggered by 
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two years. For example, a dairy rotation with corn (C) and alfalfa (A) represented as 
CCAAAA, became three management operations: 1) CCAAAA, 2) AACCAA, and 3) AAAACC. 
These duplications were then randomly distributed among the locations where the original 
land management operation occurred. A map of the final landcover layer is provided in 
Figure 6. 

3.2.5 Validation 

3.2.5.1 Transects 
WinTransect (WI DATCP, 2010) is a soil conservation assessment tool that was developed 
by DATCP and Purdue University. A transect survey is a road-side assessment of crop type, 
tillage, and residue cover. Transects were intended to be conducted on an annual basis to 
provide more accountability for soil conservation efforts, as well as be an option for 
“providing statistically reliable county and state data.” Five of the counties in the WRB had 
relevant transect data; Sauk County provided data from 2008-2013, Vernon County 
provided data from 2009-2013, Marathon County provided data from 2006-2013, Juneau 
County provided data from 2005-2010, and Wood County provided data from 2005-2012 
for a total of 2,617 observations. 

The crop types from the transect data were concatenated for each point using the same 
rules set as the CDL rotation identification described in Section 3.2.2. This provided a 
qualitative baseline assessment of the accuracy of the rotation types defined by the CDL. 
However, the two differed spatially since the transect points are not generalized for 
dominance within their respective ¼-sections, but rather, are specific to a field. As a result, 
only a qualitative comparison was made between the countywide rotation distribution 
from the CDL rotation to the countywide rotation distribution from the transect data 
(Figure 7). Generally, we saw the same distribution of crop rotations, which helped validate 
the WDNR Approach for crop rotation identification (Table 3). 

More importantly, the transect surveys were also used as a guideline for areas where gaps 
existed in the data. For example, most of the counties had reported two years of corn 
(either for grain or silage) in a six year dairy rotation. However, there were several 
exceptions where three or four years of corn in a six year dairy rotation was reported as 
the most common. To assess the validity of this the number of corn years observed in a 6 
year period from transect data at dairy field points was examined (Figure 8), and the data 
showed that the majority of dairy operations planted 1 or 2 years of corn with some 
regional differences in frequency.  

3.2.5.2 Crop Acreage 
A simple check to see if the crop acreage was still accurate after our generalization process 
(Sections 3.2.1 through 3.2.4) was to compare a given crop’s areal extent from the CDL with 
the given crop’s extent post-CDL rotation generalizations. Corn is the crop with the highest 
user and producer accuracies that the CDL identifies, is the most prevalent crop in 
harvested acreage, and is included in the widest variety of rotation types. For these 
reasons, it was the best crop to use for comparison with the generalized rotations that 
were developed. The average annual corn acreage from the CDL is very similar to average 
annual corn acreage in the WDNR approach (Figure 9). 
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3.2.5.3 Dairy Producer Locations 
The DATCP licensed dairy producer locations were used to develop a density map of dairy 
farmers. This density map is based on location of licensed dairy farm facilities, not the 
location and subsequent density of dairy farm fields. However, when the producer location 
densities were compared to the density of dairy rotation fields from the CDL analysis there 
are very similar trends (Figure 10). The initial concern was that the dairy rotation density 
would just follow the general density of agricultural production. However, it can be seen in 
Figure 10 that the non-dairy rotations defined by the CDL follow a distinctly different 
pattern. This validation helped to corroborate the other analyses, as it provided more 
certainty in the WDNR approach’s ability to identify fields that are managed by dairy farms.  

3.2.5.4 Total Mass of Applied Manure 
Similar to past SWAT applications, cattle inventories were used to validate the amount of 
manure application reported by the counties, as well as the extent of our dairy rotation 
identification (Baumgart, 2005; Freihoefer & McGinley, 2007; Timm & McGinley, 2011). 
 
This was done by calculating an average manure output per cow per year, multiplying that 
value by the total number of cows per county, and then comparing that value with the total 
average amount of manure applied per year to dairy fields. Of course, not all cow manure is 
captured and applied to dairy fields. There are other management schemes such as 
managed grazed lands and seasonally pastured animals that must be accounted for. 
Additionally, there are circumstances where manure is applied to non-dairy rotations, for 
example, when sold to other non-dairy farmers or used for non-fertilizer needs. These are 
difficult situations to account for, thus the estimates only needed to align within a 
reasonable range of the cattle inventory values (Figure 11). See Appendix D.4 for a table of 
manure comparison calculations for these counties and a summary of this appendix can be 
found in Table 4. 

3.3 Soil Data Aggregation 
Soils are a critical part of the SWAT modeling framework; properties such as texture, 
hydraulic conductivity, and available water capacity play a critical role in determining 
system hydrology. To inform the SWAT model with soil-related data, we used the county-
scale Soil Survey Geographical Database (SSURGO) (NRCS 2014). The SSURGO database is 
structured based on three levels of information: map units, components, and horizons 
(Figure 12). Horizons are the fundamental unit of soil in SSURGO, and are therefore where 
the majority of soil information is stored in the database. Components are aggregations of 
horizons that represent a full soil profile, typically conforming to the Official Series 
Description (OSD). Map units are discrete polygons drawn on a map (originally mapped at 
scales from 1:12,000 to 1:63,360) that contain one or more components that are stored 
non-spatially in the database—that is, only a list of components and their percent 
composition of the map unit is given. 

We chose to use the gSSURGO data distribution of SSURGO because gSSURGO is a form of 
the SSURGO database that is packaged in a more convenient form for large extent projects 
such as the WRB TMDL. The tabular data representing the components and horizons were 
joined together so that each component had the data required for the SWAT model (Table 
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5). For all these properties, the representative value (as opposed to the critical value) given 
by SSURGO was used. 

Defining SWAT model HRUs requires balancing the need to incorporate the most important 
information, without overloading the model with redundant or insignificant information. 
To reduce the number of HRUs in the model and generally create a simpler and more 
efficient model, we aggregated soils together based on similarity of several key properties 
that impact the hydrologic cycle. This was a two-step process: first, components within 
map units were aggregated together, and second, map units were aggregated together 
based on similarity (Figure 13). 

Several changes were made to the dataset before aggregation, in order to facilitate 
processing. Soil organic carbon content is required by SWAT, but is given by SSURGO as soil 
organic matter. The percent organic matter value given in SSURGO was converted to 
percent organic carbon by multiplying by 50%, which is the generally accepted average 
carbon content of soil organic matter (Brady & Weil, 2010). The hydrologic soil group 
(HSG) is denoted as a letter in SSURGO, either A through D, or if the soil has different 
characteristics when drained, as two letters, A/D, B/D or C/D, the former is if the soil is 
drained (e.g., through tiling or ditching), while the latter is the drainage class of soil in its 
natural state. In order to average the different components it was necessary to convert 
these letters into numbers; groups A through D were converted to integers 1 through 4 to 
correspond with increasingly wetter drainage conditions. Once a number was obtained for 
the HSG, it was treated as any other soil property in the aggregation process, then rounded 
to the nearest integer, and converted in the same manner to a letter once the aggregation 
was finished. 

For those components with dual HSGs, we assumed that if greater than 10% of the area in 
the map unit was agriculture, the SSURGO map unit would be split into two separate 
polygons, one where land was assumed to be drained and the other not drained. 
Conversely, if the land use was not majority agriculture then the land was assumed to not 
be drained, and the “D” designation was chosen. Where map unit polygons were greater 
than 10% agriculture, raster pixels from the land cover dataset (Section 0) that represent 
agricultural land cover types were used to define the boundaries of drained land. For these 
map units, the agricultural portion of the polygon was assigned the first letter of the dual 
hydrologic soil group (e.g., “A” for “A/D”), and the non-agricultural portion was assigned a 
“D” soil type. 

3.3.1 Component-Level Aggregation (step 1) 
The first aggregation step was to aggregate components by map unit to conform to the 
SWAT soils data structure. The data structure for soils in SWAT does not directly conform 
to SSURGO data structure; the main difference being that there is no analogue to the 
SSURGO component level in SWAT—in other words, soils in SWAT cannot be subdivided 
(Figure 14). We aggregated components by computing component-weighted averages of 
each soil property for any given depth of soil from the soil surface to the average depth 
(Gatzke et al., 2011). These averages were computed using the slab function in the aqp 
package (Beaudette, Roudier, & O’Geen, 2013) in R statistical software (R Core Team, 
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2013). We used this algorithm to apply a depth-weighted average to each horizon, while 
also weighting the percent composition of each component. The depth and number of 
horizons of the aggregated soil profile produced by this algorithm must be specified before 
processing. The depth was calculated as a weighted mean of the full depths of soil profile in 
each of the components, with the weights equal to the percent composition of each 
component. Since the number of horizons was assumed not to matter as much as the 
maximum depth, an arbitrary number of five horizons was chosen for the aggregation 
algorithm. 

Using the above aggregation method 48,585 individual soil components were aggregated to 
1,603 map units. Because the HRUs used in SWAT were derived using unique combinations 
of land use, slope and soil types, this number of soil map units was still too many for 
efficient computation and so a second step of soils data aggregation was necessary to 
further reduce the number of soil types. 

3.3.2 Map-unit-level aggregation (step 2) 
Other researchers have aggregated soil types by their taxonomic class (Gatzke et al., 2011). 
However, Soil Taxonomy, the soil classification system of the US primarily classifies based 
on soil morphology and not necessarily on properties relevant to SWAT. We decided that 
the most relevant soils information to SWAT is hydrological data, specifically the HSG 
(Figure 15) , which is one of the two components used to designate soil curve number 
(NRCS, 1986). Groups of the same HSG were split into clusters of homogeneous soil 
properties. The map units within each of these clusters were then averaged together to 
create an average profile for that homogeneous set of soils. These averages were then used 
as the soil types for the HRU definitions and the SWAT modeling. 

To begin, each map unit (each of which is an aggregation of components, as described 
above) was placed into one of four groups according to its hydrologic soil group, A, B, C or 
D. To subdivide these groups further, a clustering algorithm was used to objectively create 
clusters of map units with homogeneous soil properties. For this purpose, we used 
Gaussian mixture models to assign map units to clusters. The mixture model approach we 
used was implemented within the Mclust function in the mclust package in R (Fraley, 
Raftery, Murphy, & Srucca, 2012). A mixture model is a probabilistic model for 
representing the presence of subpopulations within an overall population. In our case, the 
overall population would be the group of map units of similar hydrologic soil groups (i.e., 
all map units with an HSG of A), while the unknown subpopulations are the clusters of map 
units with similar distributions of soil properties (such as a clusters of sandier soils, 
shallow soils, or slow saturated conductivity). We allowed the clustering algorithm to 
choose any number of clusters from 1 to 100 allowing the algorithm to converge on an 
optimal number of clusters. The resulting numbers of clusters within each HSG were 41 for 
A, 41 for B, 66 for C, and 15 for D. We also reserved a separate HSG designation for drained 
classes that we clustered together regardless of their drained HSG type; we assumed that 
drained soil types are more similar to other drained soils than those without drainage. In 
the case of drained soil clusters, the HSG was estimated by converting the drained HSG 
designations to integers ({A,B,C,D} = {1,2,3,4}) and computing the average. A total of 11 
clusters were created for drained HSG map units. 
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In order to use the clustering function we had to put our data in a format in which it could 
be used by the Mclust function. We calculated horizon depth-weighted averages of each 
soil property for each map unit, essentially collapsing the soil profile down to one 
aggregate horizon with average properties. Profile depth was still considered in the 
clustering algorithm using the total depth of the profile. 

After each map unit had been assigned to a cluster, the map units within each cluster were 
aggregated together to form a composite or average soil profile. The same soil profile 
aggregation algorithm (Beaudette et al., 2013) used to aggregate several components 
together in the first step was used to combine the soil profiles of a cluster into one 
composite soil profile. In this implementation, each map unit was given equal weight in the 
aggregation algorithm. 

Not every map unit was included in the clustering procedure. Several of the soil property 
fields of the SSURGO dataset were not populated or commonly had “no data” values; these 
properties were not used in the clustering process so the spurious zeros would not 
influence the algorithm. These properties were coarse fragments, calcium carbonate, and 
electrical conductivity. Albedo and pH were also excluded from the clustering algorithm. 
Map units that had no HSG designation were not included, nor were map units that did not 
have information on the soil properties of the horizons. Examining these excluded map 
units revealed that they were generally disturbed landscapes or those without a significant 
soil layer such as pits, landfills, urban or made land, rock outcrops, and water. These 
miscellaneous map units were all grouped together as one cluster with the exception of 
water. All water map units were collapsed into one using properties described in the 
default ArcSWAT SSURGO database2. 

3.4 Slope Classification 
Topographic features are characterized at the subbasin level in SWAT. Using ArcSWAT 
software, we created a slope grid within the same grid domain as our basin-wide DEM (900 
m2 resolution) using the National Elevation Dataset (NED; data available from the U.S. 
Geological Survey). The slopes for each subbasin were grouped into five quantile classes 
(Figure 16) for the purpose of defining HRUs (Section 3.5). Each class contained 
approximately equal numbers of grid cells whose value fell within the range of values of 
each bin. These bins in percent were 0.0–0.5, 0.5–1.5, 1.5–3.0, 3.0–5.8, and > 5.8 (or in 
degrees, 0–0.87, 0.87–2.62, 2.62–5.24, 5.24–10.2 and > 10.2). After HRU definition (Section 
3.5), slopes were set to back to the average slope of the HRU rather than a uniform value 
associated with one of the above bins. The ArcSWAT software also attempts to estimate 
slope lengths, however these estimates have bound found to be high, and so the following 
alternative method was used (Baumgart, 2005): 

                                                        
2http://swat.tamu.edu/media/63316/SWAT_US_SSURGO_Soils.zip 

http://swat.tamu.edu/media/63316/SWAT_US_SSURGO_Soils.zip
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Equation 1 

𝐿𝑆 =
91.4

(𝑆 + 1)0.4
 

where 𝐿𝑆 is the slope length in meters, and 𝑆 is the average slope of the HRU expressed as a 
percent. 

3.5 HRU Definition 
The hydrologic response units in SWAT are defined by unique combinations of land use, 
soils, and slope class and are unique for every subbasin. If every combination were 
honored, there would be tens of thousands of HRUs and the model would take an 
impractical amount of time to run while having a number of functional redundancies 
within it. To reduce the number of HRUs, ArcSWAT allows for the removal of small HRUs; 
therefore, by setting a minimum threshold for each landcover, soils, and slope class, we 
reduced the number of overall HRUs, according to the following process. First, if a given 
landcover covered less than 1% of a subbasin, we excluded it and proportionally 
reallocated the remaining landcover classes so that they would add to 100%. Second, 
within the remaining landcover classes, if a given soil type covered less than 20% of a 
landcover class, it was excluded and reallocated in the same way as landcover. Finally, 
within the remaining landcover/soil combinations, if a given slope class covered less than 
50% of a landcover/soil combination, it was excluded and reallocated. This means that only 
the dominant slope class is used for a given landcover/soil combination. This iterative 
method of exclusion resulted in 5,351 HRUs - a manageable number for performing 
calibrations, but yet detailed enough where there is little data resolution lost.  

3.6 Weather Data 
Weather data was extracted from the DAYMET 1-km gridded climate dataset (Thornton et 
al., 2014) for each day during the 12-year period spanning January 1, 2002 to December 31, 
2013. The weather data used for each subbasin was the data associated with the gridcell in 
the DAYMET dataset nearest to the geometric centroid of the subbasin. The weather 
variables extracted from DAYMET were precipitation, minimum and maximum 
temperature, day length, solar radiation, and vapor pressure. Precipitation, temperature, 
and solar radiation were used directly as input to the SWAT model. Relative humidity was 
derived by dividing DAYMET vapor pressure by saturated vapor pressure that was 
estimated by solving the Antoine equation: 

Equation 2 

𝑙𝑜𝑔10𝑝 = 𝐴 −
𝐵

𝐶 + 𝑇
 

where 𝑝 is saturated vapor pressure, 𝑇 is average daily temperature from DAYMET, and A, 
B, and C are constants associated with water: 8.1, 1731, and 233 respectively. Wind speed 
is not a variable packaged with DAYMET. We compiled wind speed data using an online 
tool provided by SWAT developers at Texas A&M University 
(http://globalweather.tamu.edu/). The wind speed data is ultimately derived from the 

http://globalweather.tamu.edu/
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Climate Forecast System Reanalysis (CFSR) at the National Centers for Environmental 
Prediction (NCEP). 

Deterministic models such as SWAT usually perform better with a spin-up period of several 
years to allow the water budget and other physical and chemical processes of the system to 
equilibrate. We chose a spin-up period equal in length to the model period of 24 years. This 
is an unusually long spin-up period for a SWAT model. However, we found that a longer 
simulation was required for the unique groundwater dynamics of certain regions in the 
basin to equilibrate. For these 24 years, weather was stochastically simulated by SWAT 
using patterns of historic weather between the years of 1961 and 2010. 

3.7 Point Sources 
A complete inventory was conducted that compiled all permitted wastewater surface 
outfalls within the WRB (Figure 17). This inventory is required for simulating conditions 
for the SWAT modeling period of 2002–2013. The inventory process involved querying 
existing WDNR databases, verifying with Regional WDNR staff, and developing methods to 
consistently account for gaps in data.  

A list of facilities with WPDES permits and their surface water outfalls within WRB was 
generated from WDNR’s SWAMP (System for Wastewater Applications, Monitoring, and 
Permits) database. This list was verified by regional WDNR basin engineers to ensure no 
outfalls were missing from the list. In addition, their location and receiving water were also 
verified. 

To properly calibrate the SWAT model, wastewater flows, as well as TP and TSS loads were 
required. Data related to discharge flows, TP concentrations, and TSS concentrations were 
queried from the SWAMP database. Sample values were averaged for each month from 
2002 to 2013. These values were reviewed by the basin engineers for each outfall to check 
for anomalous values and identify data gaps. 

For wastewater facilities without reporting requirements for one or more of the desired 
variables, the complete dataset was not available through SWAMP. Since a complete record 
of flow, TP, and TSS was required for each facility outfall, data gaps were filled in using 
other available information. Those other sources of available information included sample 
results submitted as part of permit applications, averages of other data available for a 
particular outfall, influent values for flows where influent flow equals effluent flow, the 
value of the closest available month, or requesting data from the facility. Also, some flow 
values were adjusted if it appeared that the facility discharged for only part of a particular 
month. To calculate TP and TSS loads for input to the SWAT model, the monthly average 
flows are multiplied by the TP or TSS concentrations, respectively. 

For facilities with outfalls that intake river water, WDNR determined whether or not there 
was additional TP or TSS (above what was in the river water) added before being 
discharged. If not, the outfall was considered to have no net discharge and the TP and TSS 
concentrations were set to zero. If there was addition, we used the closest available river 
sample data to subtract out the river concentration from what was being discharged, giving 
a net discharge less than what was measured at the outfall. 
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4 Additional Model Configuration 

4.1 Specific Agricultural Operations 

4.1.1 Tillage 
The types of tillage practiced on farms were reported to the WDNR by county conservation 
staff and local experts. County staff mapped the dominant tillage practices within each PLSS 
quarter section in agricultural land use. Specifically, for each PLSS ¼-section, tillage timing 
(e.g., spring or fall) and type (e.g., chisel disk or moldboard plow) was reported across a 6-
year crop rotation. We used transect survey data collected by county staff to confirm the 
reported tillage types and timing using the methods described in Section 3.2.5.1. For 
example, fall tillage is predominant in the north central WRB and spring tillage is 
predominant in the southern WRB—a deviation from this pattern would flag it for further 
confirmation, which was mainly from professional agronomists working within the region. 

4.1.2 Inorganic Fertilizers 
The starter fertilizer application was changed from 0.22 to 0.17 metric tons per hectare per 
year with an NPK composition of 20-10-18, as per the recommendations of a panel of 
WDNR staff, faculty from the University of Wisconsin, private agronomists, manure haulers, 
and crop consultants. 

A nitrogen auto-fertilization routine was added to SWAT’s management operations. This 
operation applies nitrogen as needed to minimize plant stress due to nitrogen limitation, 
and therefore maintain proper plant growth. This assumption may not be realistic; as a 
result, the model should not be used to assess nitrogen loads in surface waters. 

4.1.3 Tile drains 
Tile drains were assumed to exist where agriculture rotations (Section 3.2.2) spatially 
intersected soil types with dual hydrologic soil group designation (Section 3.3) on slopes 
less than 1.5% (Section 3.4). In locations we assumed to be tile drained, we assumed that 
the drains were 900 mm below the surface, to drain to field capacity 48 hours after 
exceeding it, and with a 20 hour lag period between water reaching the drain and reaching 
the stream [recommended parameters, (Arnold, Kiniry, et al., 2012)]. 

4.1.4 Irrigation 
Irrigation was assumed to exist on every potato/vegetable rotation (Section 3.2.2). In 
irrigated locations where tile drains were assumed to exist, irrigation wells were assumed 
to draw from the shallow aquifer (i.e., an adjacent, underground well), to operate only 
when plants were exhibiting water stress, to lose 10% to evaporation and 1% to surface 
runoff, and to apply 90 mm each day it operates. 

4.2 Canopy Storage 
The storage and evaporation capacity of the forest canopy differs substantially across 
forest types. We used three different values of maximum canopy storage (in mm) for 
evergreen, deciduous, and mixed (average of evergreen and deciduous) forests (Wu & 
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Johnston, 2008). These values were 2.0, 6.6, and 4.3 mm, respectively. A value of 1.25 mm 
was used for all other landcover types (Zinke, 1967). 

4.3 Soil Phosphorus 
Soil phosphorus concentrations aggregated by county, for each year spanning 1974 to the 
present, were obtained from the University of Wisconsin Soil Testing Laboratory  
(University of Wisconsin–Madison Soil Science Department, n.d.). We used the annual 
average soil concentration nearest the beginning of the model spin-up period, 1995, to 
establish the starting concentrations. Starting soil phosphorus concentrations for each 
subbasin were estimated by calculating an area-weighted average of each county within a 
subbasin. The soil testing laboratory receives almost exclusively agricultural soils. To 
reflect this bias in the soil phosphorus data, only agricultural HRUs were assigned the 
subbasin average concentration, whereas non-agricultural HRUs were assigned SWAT’s 
default concentration (5 mg P/Kg). This default concentration is assumed to equilibrate 
over the 12-year model spin-up period. Soluble phosphorus concentrations were estimated 
as half of the reported phosphorus using the Bray-1 method measured with a 
spectrophotometer (Vadas & White, 2010). Organic phosphorus concentrations were 
estimated by assuming that phosphorus constitutes 0.85% of organic material measured by 
loss of weight upon ignition (Havlin, Beaton, Tisdale, & Nelson, 2005). SWAT allows soil 
phosphorus values to be set at every soil horizon, in our case we changed the soil 
phosphorus values only for the first horizon, the rest were left at the default values. 

4.4 Urban Area Model 
Runoff volume and pollutant loads generated by urban areas within the WRB were 
simulated using the Source Loading and Management Model for Windows (WinSLAMM 
v10.0). Urban runoff volumes, TSS and TP loads generated by WinSLAMM were then 
incorporated into the SWAT model as point-source discharges. Areas modeled in 
WinSLAMM were removed from the SWAT subbasin extents to avoid double counting. 
Urban area boundaries were derived from a combination of U.S. Census TIGER files, 
Wisconsin 1:24k hydrography, and for permitted MS4s, maps provided by municipalities 
(Table 6). The extent of urban areas modeled in WinSLAMM was defined as areas within 
the municipal limits of cities and villages; urbanized areas within townships that have an 
MS4 permit; and State Department of Transportation right-of-way located within an 
urbanized area, and county transportation right-of-way located within an urbanized area of 
a county that has a permitted MS excluding the following areas: 

1. Large, contiguous non-urbanized3, undeveloped areas located within the municipal 
limits of a city or village 

2. Areas mapped as open water (according to the USGS National Hydrography Dataset) 
within the municipal limits of a city or village 

                                                        
3“Urbanized areas” is defined as an area classified as such by the 2010 Decennial Census. For the purpose of 
this document “urbanized area” is a specific term that relates the census and should not be confused with the 
overall “urban model area”. 
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3. Undeveloped (based on visual inspection of 2010 aerial orthophotography) 
floodplain islands within the municipal limits of a city or village 

4. Pixels within non-permitted urbanized areas that are not classified as developed 
according to the landcover dataset described in Section 3.2.1 

4.4.1 Urban Subbasin Delineation 
For urban model areas located within permitted MS4s that provided the WDNR with GIS 
storm sewer, sewershed, and outfall mapping, the urban model area draining to each TMDL 
reach was delineated according to the mapping provided, rather than SWAT subbasin 
boundaries. For unpermitted MS4s, and permitted MS4s that did not provide the 
aforementioned GIS mapping, SWAT subbasin boundaries were used to delineate urban 
model subbasins. 

4.4.2 WinSLAMM methods 
The major environmental factors in a WinSLAMM model are weather, land use, and soils. 
The same weather data used in the SWAT model was used for WinSLAMM (Thornton et al., 
2014)—the DAYMET pixel nearest to the centroid of each municipality. Soils information 
also came from the same SSURGO dataset used in the SWAT model (NRCS 2014). The 
SSURGO dataset was binned into soil texture classes according to recommendations 
described in the WinSLAMM documentation: A = sand, B = silt, and {C,D} = clay. For each 
combination of municipality, municipality type (MS4 or non-permitted urban), subbasin, 
and soil texture class, WinSLAMM was run using the nearest DAYMET precipitation data. 
Daily simulated particulate and filterable forms of phosphorus were translated to organic 
and mineral forms, respectively, when input as point sources in the SWAT model. 

For landuse, we used the standard “medium density residential, no alleys” land use file. 
This approach was used because the average annual TSS yield predicted by WinSLAMM for 
permitted MS4s in Wisconsin overall using mixed landuse files has been found to be similar 
to the average annual TSS yield generated by the “medium density residential no-alleys” 
file with the drainage system defined as curb and gutter (The Cadmus Group, 2011). This 
approach assumes no pollutant load reduction by control measures. 

The monthly TSS and TP loads generated by urban model areas was calculated using a load 
per unit area (or yield) approach. The monthly TSS and TP yield for sand, silt, and clay soil 
textures were predicted in WinSLAMM for each municipality using rainfall specific to the 
municipality. We calculated the total load for each watershed within a municipality by 
multiplying constituent yields by the area of its associated soil type mapping unit, and 
summing the soil-specific loads within each urban subbasin (Section 4.4.1).  

4.5 Ponds and Wetlands 
The SWAT model simulates rainfall storage using the ponds, wetlands, and potholes 
functions, where ponds and wetlands are defined at the subbasin level and potholes are 
defined at the HRU level. Due to the large geographic area covered by the WRB SWAT 
model, we chose to model rainfall storage using only ponds, conceding that HRU-level 
storage was too detailed and did not match the scale of analysis, and aggregating both 
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ponds and wetlands together resulted in a more parsimonious model that simplified 
calibration. 

The ponds function in SWAT requires at a minimum, input of geometric properties and 
hydraulic conductivity; a number of additional parameters to control sediment and 
chemical processes are optional. We calculated geometric properties using a combination 
of WHDPlus (Diebel et al., 2013), the Wisconsin 1:24k Hydrography Geodatabase (WDNR, 
2015), the Wisconsin Lake Book (WDNR 2009), and terrain analysis. We set hydraulic 
conductivity to zero, reserving it as a calibration parameter. 

4.5.1 Ponds 
The geometric properties of ponds required as input by SWAT includes all of the following: 
the fraction of the subbasin that drains to a pond; the storage volume at the principal and 
emergency overflow elevations; and the surface area at the principal and emergency 
overflow elevations. The principal/emergency lexicon is adopted from reservoir 
management, but in SWAT they refer to normal conditions and flood conditions, 
respectively. We considered a waterbody to be a pond if it was designated as internally 
drained in the Wisconsin Hydrography Geodatabase (WDNR, 2015). We used the volume of 
the lake stored in the database to represent the principal volume in SWAT. The Wisconsin 
Hydrography Geodatabase was digitized from USGS topographic maps, so we assume that 
the interpretation of the aerial photography associated with the USGS topography maps 
was representative of normal conditions. We also assume that normal surface area matches 
normal volumes that were taken directly from Wisconsin Lakes (WDNR 2009). 

In locations where the normal volume was not listed in Wisconsin Lakes (WDNR 2009), the 
maximum depth of the lake typically was. For those lakes where volume was not listed, we 
predicted their volume based on a fitted regression using maximum depth (𝑝 < 0.001) and 
surface area (𝑝 < 0.001) as predictors (Figure 18). 

Equation 3 

𝑽 = 𝑒−0.1+1.1∗ln(𝐴)+0.6∗ln(𝑫)                           

Where maximum depth was not available, we fitted a separate regression using only 
surface area (Figure 18). 

Equation 4 

𝑽 = 𝑒0.7+1.3∗ln(𝑨)                                

In the above equations, V is the volume of any given lake in acre-feet, 𝑨 is surface area in 
acres, and D is maximum depth in feet. The volumes were then converted to hectare-
meters as they are used in SWAT. 

The contributing area of each pond was estimated using the WHDPlus database (Diebel et 
al., 2013). WHDPlus includes a polygon feature class of watersheds of each hydrographic 
unit in the Wisconsin Hydrography Geodatabase. The watersheds of all lake-type 
hydrographic units defined as “landlocked” were selected, and the sums of the areas of 
these watersheds were used to define the percent of each subbasin that flows to a pond. 
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Emergency volume and surface area were estimated using terrain analysis. We simulated 
overtopping of ponds by "filling" the DEM—filling the DEM raises the elevation of grid cells 
within internally draining areas until the landscape simulates overtopping of internally 
draining areas. Once the DEM was filled, we calculated the elevation difference of each 
filled grid cell that intersected the internally draining area associated with the landlocked 
lake (Figure 19). To calculate emergency volume, we summed the elevation differences and 
multiplied by the grid cell area. This was done for each landlocked hydrographic unit in 
WHDPlus, and summarized for each of the 338 subbasins in the WRB. 

Equation 5 

𝑉𝑚𝑎𝑥,𝑠 =∑ ∑ (
𝑛

𝑐=1

𝑚

𝑙=1
𝛥𝑒𝑐 ⋅ 900)𝑙                           

Emergency volumes of all ponds within a given subbasin 𝑉𝑚𝑎𝑥,𝑠 were calculated using the 
above equation where 𝑙 represents a landlocked lake within a subbasin, 𝑐 is a grid cell 
associated with the internally drained area of a landlocked lake, 𝛥𝑒𝑐 is the elevation 
difference between the original DEM and the filled DEM for any grid cell 𝑐, and 900 is equal 
to the area in meters of all grid cells in the DEM. 

4.6 Wetlands 
Wetland parameters (the same as those calculated for ponds) were calculated for each 
subbasin using a terrain-based approach. A digital elevation model (DEM) was filled using 
the Fill function in ArcGIS, filling all of the sink areas and causing all simulated water to run 
off of the landscape. The original DEM was subtracted from the filled DEM to derive a 
surface of the depth of internally drained areas or sinks. This sinks layer shows the 
internally drained areas for the basin. 

The areas classified by the CDL as herbaceous wetlands, woody wetlands, and cranberries 
were considered to be areas where wetland vegetation is likely to be found. If wetland 
vegetation exists it can be assumed that the landscape has a consistent wetland hydrology, 
enough that it is expressed in the vegetation. The intersection or overlap of the sinks layer 
and the wetland vegetation, as identified by the CDL, was considered to be the principal 
wetland surface area. To calculate principal storage volume, we assumed an average water 
depth for any given wetland to be 0.5 m, and then multiplied this by the principal surface 
area. For emergency surface area, we calculated the area of the spatial union of CDL 
wetlands and sink areas. To calculate the emergency storage volume, the volume of sinks 
were summed and then added to the principal storage volume. To determine the fraction of 
the subbasin that contributes to wetlands, the maximum surface area of the wetlands was 
divided by the subbasin area. Once all ponds and wetlands geometric properties were 
estimated, the two were combined (Figure 20) and modeled as a single entity. 

There are precedents to using a terrain-based approach to defining wetland areas in SWAT. 
Almendinger and Murphy (2007) considered internally drained areas as wetlands (as 
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identified by remote sensing4) if they were not connected to the main channel and lakes 
were considered ponds in their SWAT model. Wetlands, identified through remote sensing, 
were considered SWAT wetlands only if they occur on the main channel. Similarly, Kirsch, 
Kirsch, and Arnold (2002) considered internally drained areas as wetlands in SWAT if they 
overlapped with remotely-sensed-defined wetlands; if they did not, they were considered 
ponds. Almendinger and Murphy (2007) modeled closed internal depressions as wetlands 
and open (those draining to the main channel) as ponds. 

4.7 Evapotranspiration Equation 
We selected the Penman-Monteith equation to model potential evapotranspiration across 
all subbasins, because it outperformed the other two options in SWAT (the Hargreaves and 
Priestley-Taylor equations) in both Nash-Sutcliffe coefficient and percent bias, when 
comparing modeled water yield to observed water yield. at 29 sites across the basin. The 
Penman-Monteith equation is an energy balance and aerodynamic formula that computes 
water evaporation from vegetated surfaces. The equation estimates evapotranspiration 
rates based on solar radiation, temperature, wind speed, and relative humidity. 

4.8 Groundwater 

4.8.1 Groundwater Inflow (Baseflow) 
In SWAT, the relative contribution and timing of streamflow as baseflow is determined by 
the ALPHA_BF parameter and can be adjusted for each subbasin. An effort was made to 
regionalize this variable to account for the wide variations in baseflow conditions across 
the WRB. A regression model was fitted that relates baseflow to upstream watershed 
characteristics. Then this model was used to predict ALPHA_BF at ungauged sites in the 
WRB. In order to construct a model relating baseflow contribution to watershed 
characteristics it was necessary to obtain observed values of baseflow. The Baseflow 
Program (Arnold, Allen, Muttiah, & Bernhardt, 1995) was used to estimate baseflow from 
daily streamflow data. All monitoring stations in Wisconsin (USGS 2014) that met the 
requirements of the Baseflow Program were used, excluding sites with upstream 
watersheds less than 50 km2 or greater than 1,000 km2 (Arnold, Muttiah, Srinivasan, & 
Allen, 2000). 

The baseflow algorithm requires continuous daily observations of streamflow for at least 
one year, from which it determines the baseflow contribution from the hydrograph. After 
the observed data were downloaded, they were processed to ensure that only contiguous 
periods of streamflow of at least one year were used in the routine. For this analysis gaps of 
up to nine days were allowed in the record and still considered contiguous. If a monitoring 
site had one or more gaps of longer than nine days, it was split at the gaps into separate 
records and each part assessed independently. Therefore, it was possible for a monitoring 
site to have several periods of contiguous streamflow records.  

                                                        
4 Specifically, the remotely sensed imagery was from the WISCLAND data set; a dataset of landcover 
determined from LANDSAT imagery. 
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The Baseflow Program was run at each USGS gage site and the program output and 
ALPHA_BF was estimated (Arnold et al., 1995). This smoothing algorithm produces several 
outputs, one for each successive pass of the smoothing filter. The final pass (third and 
smoothest) was used in the regression model. For sites with multiple records, the Baseflow 
program values were averaged, weighting the values by the length of the record. 

The resulting ALPHA_BF estimates from the Baseflow Program were site-specific, and thus 
were only valid for upstream subbasins. To parameterize ALPHA_BF for ungauged 
subbasins, we fit a multiple linear regression model to predict baseflow using upstream 
watershed characteristics. Data regarding the landscape characteristics of the watershed 
for each monitoring station were retrieved from WHDPlus (Diebel et al., 2013). 
Additionally, the Environmental Protection Agency’s (EPA) Ecoregion boundaries level III 
was used as a categorical variable. We tested a suite of geologic, soil, and topographic 
watershed characteristics that could potentially affect baseflow by calculating Pearson’s 
correlation coefficients and visually analyzing scatterplots. The final model was selected 
based on 𝑅2. We used residual plots to examine evidence of model bias. The best model 
(Equation 6 and Figure 21) used average slope of watershed, average permeability, and the 
EPA ecoregion boundaries. The ecoregion boundaries were used as a factor on the 
watershed slope term. The ecoregion term with slope was meant to allow for the 
expression of the effect of slope on the baseflow contribution in different regions in the 
WRB (e.g., different slope terms for the Driftless Area and the Central Sands ecoregions). 

Equation 6 

𝑨 = 𝛽0 + 𝛽1𝑬𝟏𝑺 + 𝛽2𝑬𝟐𝑺 + 𝛽3𝑬𝟑𝑺 + 𝛽4𝑬𝟒𝑺 + 𝛽4𝑷                    

Where A represents the SWAT ALPHA_BF parameter controlling baseflow, P is average 
surface permeability of the watershed, S is the average slope of the watershed, while E1-4 
are dummy variables denoting one of four ecoregion within the WRB (i.e., the slope term of 
S varies by ecoregion). 

This model was used to predict the ALPHA_BF for every small watershed in the WHDPlus 
dataset. An area-weighted average of these small watersheds was taken for each SWAT 
subbasin to aggregate the ALPHA_BF predictions. These values were used to update 
ALPHA_BF in the groundwater files for each subbasin. The resulting distribution of the 
ALPHA_BF parameter in the WRB can be found in Figure 22. 

4.8.2 Baseflow Phosphorus 
Time-variable TP concentrations in groundwater are not modeled by SWAT, but are rather 
set manually based on an estimate of naturally occurring TP (GW_SOLP parameter in 
SWAT). Rather than estimating a single value of baseflow phosphorus concentration for the 
entire WRB, we attempted to regionalize this parameter. In the Wisconsin River Basin 
SWAT model, we used values of reference baseflow phosphorus from a USGS study of 
nutrient concentrations in wadeable streams in Wisconsin (Robertson, Graczyk, et al., 
2006) where the authors used a multiple linear regression equation to predict reference 
phosphorus in nutrient boundaries known as “environmental phosphorus zones”, which 
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they use as a way of dividing the state into smaller homogeneous regions. These zones 
were derived in an earlier study by Robertson, Saad, and Heisey (2006). 

For each of the phosphorus zones, the percent land area in agricultural use and percent 
land in urban use was calculated along with the number of point sources. Using these 
variables, a multiple linear regression model predicting the concentration of phosphorus 
was fitted (Equation 7). To represent the scenario where human impact is negligible, the 
values of the predictors of this model (all of which represent human impact) are set to zero. 
With the predictors set to zero (i.e., model intercept), the predicted value of the model is 
the median phosphorus concentration when human impact is zero (Equation 8). The SWAT 
subbasins were overlaid with the phosphorus zones, and the predicted reference 
phosphorus was calculated for each subbasin using an area-weighted average. These 
reference phosphorus levels were input into SWAT using the groundwater soluble 
phosphorus parameter. 

Equation 7 

𝑷 = 𝑒𝛽0+𝛽1𝑨+𝛽2𝑼+𝛽3𝑙𝑜𝑔10(𝑶)                            

Here, A, U, and O are the percent of the watershed in agricultural and urban land use and 
the number of point source outfalls, respectively. When these are set to zero, the equation 
reduces to simply: 

Equation 8 

𝑷 = 𝑒𝛽0                                     

The resulting distribution of the groundwater phosphorus in the WRB can be found in 
Figure 23. 

Robertson et al. (2006) intended their background phosphorus values to estimate median 
phosphorus concentration in streams when there is no human impact in the watershed. 
They do not specifically estimate the groundwater or baseflow contribution to reference 
phosphorus concentration. We assume that the median reference phosphorus estimate is 
an accurate estimate of baseflow phosphorus concentration because a landscape under 
natural conditions (one without human impact) will experience much less runoff, and that 
the median estimate represents low-runoff conditions (NRCS 1986). 

4.9 Manning’s 𝒏 
Manning’s 𝑛 is an empirically derived coefficient that represents the roughness of a flow 
path. In SWAT, Manning’s 𝑛 can be set for HRUs (representing the roughness for overland 
flow), tributary channels, and reach channels, which tend to be ordered in value from high  
in upland areas to low in lowland tailwater channels. Overland flow Manning’s N values 
(Table 7) were defined based on lookup tables in scientific literature (Engman, 1986; 
McCuen, 1989). Tributary channel Manning’s 𝑛 values were set to 0.065 based on 
Baumgart (2005) and reach Manning’s 𝑛 values were set to 0.043 based on the average of 
the Eau Claire and Little Rib Rivers values from a flood insurance study conducted in 2010 
(FEMA, 2010). 
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4.10  Surface Runoff Lag 
Subbasin areas range from 0.5 to 440 km2 in the WRB SWAT model. Because of the wide 
range of subbasin size, we used the surface runoff lag coefficient (SURLAG) to adjust runoff 
timing to match time of concentration at gage sites. We initially set SURLAG to values 
between 1 and 2 with each value linearly scaled to the size of each subbasin. After 
calibration (Section 5.4), SURLAG values ranged between 0.01 and 0.8. 

5 Model Calibration and Validation 

5.1 Software and Hardware 
To run SWAT itself, we used a customized version of revision 637. The customization 
incorporates new routines that improve the prediction of soil phosphorus concentrations 
(Vadas & White, 2010). The customization was coded into Revision 637 and recompiled by 
Mike White (SWAT Developer) and colleagues at the Agricultural Research Service (ARS). 

The primary software used for calibrating streamflows and in-stream pollutants was 
SWAT-CUP 2012 v.5.1.6.2 (SWAT Calibration and Uncertainty Programs). SWAT-CUP 
allows users to adjust parameters in various ways: 

• Adjustment type 
o Relative adjustment by a scalar 
o Absolute adjustment by addition or subtraction 
o Uniformly replacing values 

• Adjustment filters 
o Hydrologic Soil Group 
o Soil Texture Class 
o Land-use 
o Subbasin 
o Slope 
o Other manual or configuration-file-specific conditions 

SWAT-CUP software was chosen because it is relatively easy to set up and understand, it is 
flexible enough for most users with typical SWAT projects, and it offers a parallel 
processing module for users that are calibrating large projects with many HRUs. We chose 
to use the parallel processing module because of a substantial reliance on auto-calibration. 
Auto-calibration was required due to the large number of HRUs in the WRB and the 
number of calibration sites for streamflow, sediment, and phosphorus that span a wide 
range of land-use, soil, and topographic geographies. Because we chose to run SWAT 
scenarios in parallel using SWAT-CUP, we were committed to using the SWAT-CUP-specific 
SUFI-2 algorithm (Sequential Uncertainty Fitting), which is non-iterative or convergent 
within a set of simulations (i.e. the parameter adjustments of each subsequent model run 
do not rely on objective function values of any prior model run) and is thus amendable to 
parallel computing. 



 

33 
 

Because we relied heavily on auto-calibration using parallel processing, we required 
computing resources with many processors, enough random access memory (RAM) to 
support numerous runs across processors, and disk storage with short access times and 
minimized latency. We chose to rent cloud computing from Amazon Web Services Elastic 
Cloud Computing (EC2) service. All calibration computing for the WRB SWAT model was 
executed on an EC2 instance with 16 dual-core Intel Xeon E5-2680 processors, 60 
gigabytes of RAM, and a solid-state drive with 750 general purpose Input/Output 
Operations per Second (IOPS) and 3000 burst IOPS. 

5.2 Monitoring and Load Estimation 

5.2.1 Streamflow Monitoring 
Daily streamflow observations (Figure 24) were collected from two sources (See Table 13 
in Section 5.7 for site information), the USGS NWIS (2014), and data collected at reservoir 
spillways obtained through personal communication with the Wisconsin Valley 
Improvement Company (WVIC). Daily streamflow were used during an initial manual 
calibration phase to ensure that the peak and timing of large events (particularly 
snowmelt) were captured by the SWAT model. However the final calibrated model was 
assessed using the average daily streamflow within each month. 

5.2.2 Pollutant Monitoring 
To estimate loads accurately, concentration samples must be paired with continuous daily 
streamflow. Therefore, sampling was limited to sites where a USGS NWIS gage site was 
located (Figure 24). Although USGS supplied large volumes of streamflow data, in a few 
cases the network of USGS gage sites was deemed insufficient in spatial coverage, and 
therefore several new USGS gages were installed (Big Rib River, Pine River, Fenwood 
Creek, Freeman Creek, Little Eau Pleine River, Plover River, Mill Creek, Big Roche-A-Cri 
Creek, Yellow River at Necedah, Lemonweir River) where large areal gaps existed. 

Within this network, several sites had loads already estimated (Muskellunge Creek and 
Link Creek) through previous studies conducted by USGS (Garn, Robertson, Rose, & Saad, 
2010; Robertson, Rose, & Saad, 2005). Some sites had enough concentration samples to 
estimate loads between 2002 and 2013, however the majority of USGS gage sites did not. 
Therefore, the WDNR collected instantaneous concentration samples where loads had not 
already been calculated or sample sizes of concentration samples were insufficient. 

The WDNR collected water chemistry samples to fill data spatial data gaps between 2009 
and 2013. At each site, concentration samples were taken at bi-weekly intervals 
throughout the whole year within the sampling period, which results in less biased and 
more precise load estimates than other sampling strategies such as “storm chasing” 
(Robertson & Roerish, 1999). Prior concentration sampling and the additional 2009–2013 
WDNR data collection effort were then compiled, paired with streamflow, and used in an 
empirical model to estimate daily TSS and TP loads. 
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5.2.3 Load Estimation 
Computation of loads for each monitored site was based on the regression methods [also 
referred to as the rating-curve methods (Cohn, 2005)] and implemented in the U.S. 
Geological Survey program Fluxmaster (Schwarz, Hoos, Alexander, & Smith, 2006). This 
method commonly is used for load estimation when infrequent water-quality data are 
available over long periods of time (Cohn, 2005). Daily loads, 𝑳, were computed on the 
basis of relations between constituent load and three explanatory variables—daily 
streamflow, 𝑸, day of the year, 𝑻 (in radians), and decimal year, 𝑫𝑻. The regression models 
use the log-transform of load and streamflow to improve the linear relation and account for 
multiplicative errors. Two different pre-defined regression models were examined for each 
site (Equation 9 and Equation 10): 

 

 Equation 9 

𝑳 = 𝛽0 + 𝛽1𝑸+ 𝛽2 sin(2𝜋𝑻) + 𝛽3 cos(2𝜋𝑻) +𝛽4𝑫𝑻 

Equation 10 

𝑳 = 𝛽0 + 𝛽1𝑸+ 𝛽2𝑸
2 + 𝛽3𝑠𝑖𝑛(2𝜋𝑻) + 𝛽4𝑐𝑜𝑠(2𝜋𝑻) + 𝛽5𝑫𝑻 + 𝛽6𝑫𝑻

2 

 

The sine and cosine terms provide seasonality in the load–discharge relation, while the 
decimal year term enables data from various years to be included in developing a relation, 
even if there is a trend in the relation. 

Water quality and streamflow data, used in calibrating Equation 9 and Equation 10 for each 
site, were collected from January 1, 1995 to December 31, 2014. Water-quality data were 
obtained from two databases: the USGS National Water Information System (USGS, 2014) 
and the EPA Storage and Retrieval (STORET) database (U. S. EPA, 2014). Flow data were 
also obtained from the USGS NWIS database (USGS, 2014). For each site, the specific 
stations for which water quality and associated streamflow data were obtained are given in 
Table 8 and Table 9. 

The regression model with the lowest standard error, SE, and ratio of the total estimated 
load to the total observed load for days with water quality measurements, O/E, was chosen 
to compute daily loads for each site. Because a log transformation was used in the models, 
final computed daily loads were adjusted to account for a retransformation bias by use of 
the minimum variance unbiased estimate procedure (Cohn, Delong, Gilroy, Hirsch, & Wells, 
1989) or the adjusted maximum likelihood method (Cohn, 2005). If a site did not meet a 
general standard of performance based on O/E and SE, the site was not used. Load 
estimates were only used for calibration and validation for periods within which samples 
were being actively collected. Summary statistics of models for each site are given in Table 
8 and Table 9 and detailed model information is provided in Appendix D.5. 

5.3 Sensitivity Analysis 
A literature review of 21 highly cited journal articles was conducted to assess which and 
how SWAT parameters have been adjusted in other projects (Table 10). Some parameters 
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were adjusted uniformly based on a set value and others were adjusted relatively, 
depending on how much was known about their response or if the parameters varied 
geographically. For example, soil available water capacity (SOL_AWC) varied for each soil 
type in the basin, so we varied its value between 50 and 150% of its original value. 
However, we had no spatial information about the soil evaporation compensation factor 
(ESCO), so we varied its value uniformly across all HRUs. Because the sensitivity is strongly 
related to the width of the range over which the value was varied, we only conducted a 
qualitative analysis. 

The qualitative analysis was carried out one-at-a-time for each of the parameters found in 
the Table 10. One-at-a-time sensitivity analyses were conducted by running the model 25 
times for each parameter holding all others constant, collecting streamflow, sediment, and 
TP loads from the model output, and plotting the change in each output parameter given a 
unit change in parameter value. In this way the effect of one parameter could be isolated 
and its impact on the model assessed. 

5.4 Calibration and Validation Strategy 
For the purpose of debugging, exploratory analysis, and general calibration, the full model 
with 5,351 HRUs was reduced to 1,651 by increasing percent thresholds for preserving 
land-use, soil, and slope classes to at least 5, 50, and 50% respectively (discussed in more 
detail in Section 3.5). The 1,651-HRU model was only used for narrowing the ranges of 
parameter adjustments, whereas the full model was used to calibrate the final parameter 
values and the model uncertainty associated with those parameter ranges. 

Because hydrologic properties vary widely across the WRB, we chose to split parameter 
sets using geographical filters that were known a priori to bound similar hydrologic 
properties. First, we divided up USGS gage sites, and the SWAT subbasins associated with 
them, using an edited version of Ecological Landscapes of Wisconsin (WDNR, 2012). In this 
edited version of Ecological Landscapes (EL), some ELs were lumped together to improve 
the parsimony of the overall model and simplify calibration (Figure 25). Lumping was 
guided based on the similarity of hydrographs of nearby USGS gage sites. For example, the 
North Central Forest and Forest Transition (FT) landscape boundaries, and the Central 
Sand Plains and Central Sand Hills (CSP) regions were grouped together resulting in a total 
of 4 zones.  Within each of these zones, all parameter adjustments were equal with the 
exception of two additional splits - on A/B and C/D hydrologic soil groups. The Western 
half of the region is dominated by C/D type soils and the Eastern half of the region is 
dominated by A/B type soils (see Figure 15 in Section 3.3.2), which provided an effective 
method for explaining differences in the hydrographs of USGS gage sites on either side of 
the East/West HSG divide. In some cases, we divided HSG groups when adjusting 
parameters at the subbasin level. In these cases, we assigned HSGs to subbasins based on 
the areal majority HSG within a subbasin. 

SWAT model calibration is rarely executed using all model data simultaneously, with all 
calibration data sets, nor is it done linearly from start to finish. Rather, SWAT model 
calibration is typically done iteratively and piecemeal, as new information is gained about 
the model’s response to individual or multiple simultaneous parameter adjustment. 
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However, a general workflow was followed for calibrating the WRB SWAT model that 
follows guidance in SWAT literature (Figure 26), with an additional first step added 
following guidance in Baumgart, 2005. First, annual average crop yields from SWAT were 
compared to basin-wide average yields (aggregated from county-level data) compiled from 
NASS. Second, daily streamflow was calibrated within each EL independently. Once daily 
streamflow was calibrated satisfactorily at all sites, we then calibrated monthly sediment, 
and then monthly TP, each independently for each ecoregion. Because sediment and TP are 
strongly linked in the model, they were often calibrated simultaneously or iteratively. 

Separate data sets were used for calibration and validation of the model; specifically 75% 
of observations were used for calibration and the remaining 25% were set aside for 
validation. However, the calibration dataset needed to have had at least 4 years of data, and 
each year must not have had more the 50% missing data; if these two criteria were not met, 
then all data were used for calibration. If the calibration dataset was split, 25% of years 
were randomly chosen for validation.  

Some monitoring stations were eliminated from calibration and validation datasets. The 
criteria for filtering were as follows: 

• If monitoring stations were redundant (on the same stream/river with similar 
hydrologic properties), the site with the most data was used and the remaining were 
not used at all. 

• If the hydrograph clearly showed that streamflow was strongly affected by 
upstream reservoir management, the site was not used. 

• If the load estimate (Section 5.2) model at a site did not perform well (i.e., it was 
overly biased, or the standard error was unsatisfactory), the site was not used. 

Reservoirs were excluded from direct integration into the SWAT model calibration process. 
Ideally, reservoirs would be integrated to provide a seamless, unified model for the 
purposes of the TMDL calculation, however there are critical tradeoffs to this benefit. First, 
when this study was conducted, the current version of SWAT did not have routines 
complex enough to simulate the types of reservoir dynamics needed for the large impaired 
reservoirs on the system, mainly Big Eau Pleine Reservoir, Lake Petenwell, and Castle Rock 
Lake. Second, it is difficult to calibrate the water balance of reservoirs in SWAT that have 
little additional storage, without having them “dry up” during low-flow periods. Finally, 
there was no option to simulate flow-through (i.e., “run-of-the-river”) reservoirs in SWAT 
comparable compared to the accuracy of simply simulating them as a large, wide, low-
gradient rivers, and therefore each reservoir was treated as such. Because of the above 
limitations, the SWAT model was calibrated for streamflow at reservoirs when treated as a 
river. However, SWAT was not calibrated for sediment and TP below mainstem reservoirs. 
Instead, TP was adjusted along the mainstem below reservoirs by developing a sub-model 
that scales the cumulative load estimated by SWAT according to the measured load 
retention at specific sites (Section 5.13). TSS retention on the mainstem was ignored 
because the TSS allocations will only be assigned to reaches located the Baraboo River 
basin where the likelihood of a sediment impairment is much higher than elsewhere in the 
WRB. 
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5.5 Assessment of Model Fit 
We followed well established guidelines in the scientific literature for assessing model fit. 
Moriasi et al. (2007) has been cited nearly 2,775 times (August, 2016, 
www.scholar.google.com) because it establishes numeric benchmarks for model 
performance that are adaptable to most SWAT (and other hydrologic models, empirical and 
mechanistic) applications. The numeric criteria are calculated using three objective 
functions: 1) percent bias (PBIAS), 2) Nash-Sutcliffe efficiency (NSE), and 3) root mean 
square error standard deviation ratio (RSR). However, RSR was not used as a performance 
standard in this study. The equations for PBIAS and NSE are as follows: 

Equation 11 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑖

𝑠𝑖𝑚 − 𝑌𝑖
𝑜𝑏𝑠) ∗ 100𝑛

𝑖=1

∑ 𝑌𝑖
𝑜𝑏𝑠𝑛

𝑖=1

] 

Equation 12 

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑠𝑖𝑚 − 𝑌𝑖
𝑜𝑏𝑠)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

] 

“where 𝑌𝑖
𝑜𝑏𝑠is the 𝑖th observation of the constituent being evaluated, 𝑌𝑖

𝑠𝑖𝑚is the 𝑖th 
simulated value for the constituent being evaluated, 𝑌𝑖

𝑚𝑒𝑎𝑛is the mean of observed data for 
the constituent being evaluated, and 𝑛 is the total number of observations” (Moriasi et al., 
2007). Moriasi et al. (2007) also provide general benchmarks that represent categorical, 
qualitative interpretations (very good, good, satisfactory, and unsatisfactory) of numeric 
criteria (See Table 16 in Section 5.8 for pollutant-specific benchmarks). 

We used these numeric criteria, in combination with visualizations (e.g., hydrographs, 
observed versus predicted scatterplots) during calibration. During the phases when we 
calibrated manually, we mainly used visualizations as a guide for inspecting model fit. 
During the phases when we were auto-calibrating (using the SUFI-2 algorithm within 
SWAT-CUP software, Section 5.1), we used either (not simultaneously) PBIAS or NSE as 
calibration targets. Generally, NSE was used more often for calibrating to runoff events, and 
PBIAS was used for baseflow and overall water budget. 

5.6 Crop Yields 
Crop yields were calibrated for alfalfa, corn grain, corn silage, soybeans, potatoes, green 
beans, and sweet corn. County-level crop yield data were acquired from the National 
Agriculture Statistics Service (NASS 2013) to compare to SWAT crop yield output. Crop 
yields were calibrated first because accurate simulation of runoff is strongly dependent on 
the accurate simulation of plant growth.  

The default plant growth parameters in SWAT are often out of date and therefore do not 
consider advancements in crop genetics, changes in planting densities, or other alterations 
in management that have led to major yield increases in the last two decades. Crop growth 
parameters were adjusted to represent more recent literature values to more accurately 

http://www.scholar.google.com/
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simulate the reality in the field (Table 11). By adjusting several parameters in this process 
we were able to keep all parameters closer to literature values than by adjusting BIO_E 
alone (a common crop yield calibration strategy). The SWAT documentation suggests that 
because BIO_E (radiation use efficiency parameter) is so sensitive that it should be adjusted 
last (Arnold, 1994), and the above calibration process honors that recommendation.  

The estimated crop yields outputs from SWAT (Table 12) are represented as metric tons 
per hectare of dry matter (0% moisture), however county yields from NASS are crop-
dependent (e.g., short tons per acre for green beans, bushels per acre for corn grain, or 
hundredweight per acre for potatoes). Data from NASS consist of surveys from farms, 
which means that yield moisture weights are not necessarily standard, although a standard 
range of moisture values exists for most of these crops. For instance, NASS assumes the 
typical moisture values for alfalfa, corn grain, and soybeans to be around 14%, 15%, and 
13%, respectively. Literature reviews were conducted to determine typical moisture 
contents of corn silage, potato, green beans, and sweet corn of approximately 70%, 80%, 
90%, and 75%, respectively (Akhavan et al., 2010; Delahaut & Newenhouse, 1997; 
University of Georgia Vegetable Team, 2013; Williams & Lindquist, 2007). 

5.7 Streamflow 
After exploring model sensitivity to typically adjusted parameters, we began calibrating 
streamflow. Streamflow estimates from SWAT were calibrated by comparing model 
estimates to observed flow at 29 USGS gage stations and 2 reservoir spillways (See Figure 
24 in Section 5.2) operated by WVIC (Table 13). Only approved (A) and 
approved/estimated (A:e) measurements from NWIS were used. The objective functions 
used to assess model fit were NSE and PBIAS. Objective functions serve different purposes 
in calibrating hydrologic models and as such, we optimized different objective functions 
depending on the goal. For example, we aimed to maximize NSE when adjusting 
parameters associated with high flow or runoff events because an optimized NSE tends to 
favor the calibration of larger values, and we aimed to minimize PBIAS when adjusting 
parameters associated with low flow or baseflow because it better represents an overall 
water budget and ensures there are no systemic over or under-estimations. 

For all ecoregions, USGS gage sites were used for calculating the objective function value of 
model estimates with the exception of the Northern Highland (NH) EL. The NH EL contains 
only two gages that are not significantly impacted by anthropogenic water regulation. The 
two remaining gage sites drain relatively small watersheds, both of which contain a 
significant fraction of land that does not contribute to surface runoff. To supplement these 
data, we included observed data from 2 reservoir outfalls, Lake Alice (Kings Dam) and Lake 
Mohawkson (Herb Mitchell Landing). Because these two reservoirs are managed for 
storage, they did not calibrate well at a monthly time step, however they provided a means 
for assuring that the calibration at the other 2 USGS gage sites were representative of the 
general water budget of the whole NH EL. 

It is often useful to separate surface runoff from baseflow when calibrating certain 
parameters. For example, the curve number and surface runoff lag coefficient (CN2/CNOP  
and SURLAG in SWAT, respectively) can be useful for calibrating the amount and timing of 
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surface runoff, and the baseflow alpha factor and groundwater delay (ALPHA_BF and 
GW_DELAY in SWAT, respectively) can be useful for calibrating the amount and timing of 
baseflow. Initially, baseflow and surface runoff were separated by choosing the lowest 50% 
and highest 25% of daily streamflow observations, respectively. In some cases, we chose 
only certain months of the year as calibration targets. For example, for surface runoff we 
calibrated CN2/CNOP and ESCO only during summer months, but snowmelt parameters we 
only calibrated to daily observations from February through June (See Table 10 from 
Section 5.3 for parameter descriptions). Daily streamflow were calibrated with a mixture of 
manual and auto-calibration. The final parameter adjustments are listed in Table 14 and 
Table 15. Daily calibration of streamflow was mainly done within the generalized model 
with fewer HRUs (See Section 5.4). When daily streamflow fit well within the generalized 
version of the model, we ensured that it also translated to a good fit with the full model and 
at a monthly time step. 

The final monthly streamflow calibration with the full model performed well with respect 
to standard benchmarks of accuracy (Table 16 and Table 17). The streamflow calibration at 
all sites were satisfactory (PBIAS < 25% and NSE > 0.5) except for two sites in the NH EL 
(Link Creek and Muskellunge Creek) both of which have small watersheds, much of which 
is internally drained or wetland, which makes watershed delineation difficult. As an 
additional verification that the water budget in the NH EL was calibrated well, we used 3 
other sites within the NH EL (Wisconsin River at Kings Dam, Wisconsin River at Herb 
Mitchell Landing, and Wisconsin River at Rhinelander)—these sites have heavily modified 
streamflow, so they were only used as a rough indicator of the calibration of the water 
budget by visualizing how the simulated hydrographs compared to observed.  Of the 29 
sites, 17 had very good PBIAS (less than 10%), and 19 out of 29 sites had very good NSE 
(greater than 0.75). However, some sites did not meet satisfactory measures of accuracy 
during validation—3 out of 29 sites had greater than 25% PBIAS and 5 out of 29 sites had 
NSE less than 0.5. However, 2 of the 5 sites that did not validate satisfactory based on NSE 
are directly below dams (Petenwell and Castle Rock dams), but there was very little 
validation bias at these sites (11% and 6%, respectively), so the lack of fit is likely due to 
disparities in timing from unnatural releases at the reservoir spillways. 

5.8 Sediment 
Following a widely accepted workflow for SWAT model calibration, once streamflow was 
calibrated to a desired level of accuracy (i.e., meeting standard benchmarks of accuracy for 
monthly data, listed in Table 16), we began calibrating monthly sediment loads (Figure 26). 
We used monthly sediment loads estimated using Fluxmaster software (Section 5.2.3) at 13 
sites (See Table 13 in Section 5.2) across the basin for calibration and validation. 

There are very few parameters in SWAT that control sediment delivery independent of 
streamflow, and the most sensitive of these parameters are only adjustable at the scale of 
the entire basin (e.g., SPCON and SPEXP, See Table 10 in Section 5.3 for parameter 
descriptions). Although, with detailed information about agricultural best-management 
practices or channel erosion, there are a few parameters that can be adjusted for sediment 
independent of streamflow, these details were not available for the entire WRB. This 
presented a challenge for calibration given that the basin varies widely in sediment 
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transport due to the variation of topography from steep slopes in the Western Coulees and 
Ridges (WCR) EL to nearly zero percent slopes in the CSP EL, trapping features such as 
wetlands and internally draining lakes, soil types from dense clays to loose soils along a 
West/East divide, and highly permeable aggregates along the terminus of the Green Bay 
glacial lobe of the most recent ice age. 

Without adjusting parameters beyond what has been described in the model configuration 
(Sections 3 and 4), sediment was significantly over-estimated at all sites. To address this 
over estimation, we began by assuming that a fraction of agricultural producers are 
implementing best-management practices, and that this should be reflected in the model, 
so we set the USLE practice factor (USLE_P) to 0.4 and increased the effect of leaf cover on 
agricultural crops (USLE_C = 0.1), which resulted in sediment yield estimates similar to 
those reported by county land management staff (roughly 2 pounds per acre, or 2.2 
kilograms per hectare). Next, we used the SPCON and SPEXP parameters to estimate 
sediment delivery in the most erosive ELs (WCR and western FT). When a reasonable 
calibration was achieved at gage sites by using only these two parameters, finer level 
control was achieved by using Manning’s N [CH_N(1,2)] for each EL. Where the fit was not 
sufficient at the level of an EL, we adjusted parameters independently for subbasins with 
majority A/B or C/D HSG (See Table 15 in Section 5.7 for a complete list of parameter 
adjustment) as described in Section 5.4. 

Using SPCON, SPEXP, and Manning’s 𝑛, a reasonable calibration was achieved for months 
experiencing large storm events, however there was still a lack of fit during low flow 
periods, particularly in areas with less erosive soils. In these cases, channel erosion 
parameters [CH_COV(1,2)] were used to increase low-flow sediment loads, with minimal 
adjustment to the overall sediment budget. 

The final calibrated model fit well according to the standard benchmark of accuracy based 
on PBIAS (NSE is typically not used as an assessment criterion for TSS, however it is 
reported along with PBIAS in Table 17). All sites were calibrated satisfactorily (PBIAS < 
55%) except for 2 of the 13, and 3 of the 13 fit at the level of “very good” (PBIAS < 15%). Of 
the validation set, all 8 validated sites were satisfactory except for 2. However, none were 
in the “very good” category. The only site that did not calibrate satisfactorily for both the 
calibration and validation sets was the Eau Claire River at Kelly, WI, which under-predicted 
65% for both. The Eau Claire River watershed has a mixture of internally drained and well-
drained topographies, and porous sandy soils and dense clays. There are no other major 
drainages in the basin with these mixtures of characteristics, which presented a challenge 
for calibration while keeping the model as parsimonious as possible. In the end, because 
the Eau Claire site was well calibrated for TP, we chose to keep the model parsimonious 
rather than adjusting parameters specific to the Eau Claire River watershed to force the 
model to fit. 

5.9 Phosphorus 
Following the same widely accepted workflow for calibration (See Figure 26 in Section 5.4), 
we began calibrating TP after a reasonable fit was achieved for TSS, although because TP 
and TSS are closely linked within the SWAT model, the two constituents were often 
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calibrated simultaneously or iteratively. As with TSS, we used monthly TP loads estimated 
using Fluxmaster software (Section 5.2.3) at 25 sites (See Table 13 in Section 5.2) across 
the basin for calibration and validation. 

The main control that we used for adjusting TP in the SWAT model is the width of grassed 
waterways (FILTERW). Instead of using this parameter according to the literal 
specifications in the SWAT model documentation, we chose to use this parameter as a way 
of simulating TP deposition between the edge of a field (HRU load) and the stream channel. 
The SWAT model is written in such a way that, aside from using the wetlands functions 
directly (which are meant to simulate depressional storage), there is no buffer between 
HRUs and stream channels. In reality, there are often significant buffers between 
agricultural fields and stream channels, especially within the WRB. For example, in the 
western FT EL, where the majority of dairy agriculture is located, most perennial streams 
are guarded by a wide riparian buffer that captures water during storm events, but is not 
necessarily a depressional landscape. Conversely, in the WCR EL, valleys tend to be more 
constrained and the landscape very well drained, therefore a narrower FILTERW was used 
for HRUs in that region (See Table 15 in Section 5.7 for a complete list of parameter 
adjustments). 

After setting FILTERW to appropriately buffer streams from TP delivery, our estimates of 
TP were still too high during low flow periods in some regions, indicating that our initial 
estimate of baseflow phosphorus was likely set too high. This phenomenon was most 
prevalent in the CSP EL, and the sandier and glacially affected part of the FT EL (the Eau 
Claire and Plover Rivers). For these watersheds, we decreased the groundwater soluble 
phosphorus parameter (GWSOLP).  

The final calibrated model fit well according to the standard benchmark of accuracy based 
on PBIAS (as with TSS, NSE is typically not used as an assessment criterion for TSS; 
however, it is reported along with PBIAS in Table 17). All sites were calibrated 
satisfactorily (PBIAS < 70%), and 19 of the 25 sites fell within the “very good” category for 
calibration. Only one site (Fenwood Creek) of the 16 was not validated satisfactorily. This is 
due to poor fit in streamflow during the validation period where there was a 108% 
overestimation. This can be explained by the fact that the data used for validation for 
Fenwood Creek fell within a relatively low-flow period, which is typically the most difficult 
to model in SWAT (see Section 5.10 ahead for more details). However, as the 
overestimation does not result in a significant difference in overall load, as compared to the 
rest of the simulated years, given the strong validation everywhere else (11 out of the 16 
validation sites fell within the “very good” category), this deviation was not considered 
important to the overall TMDL. 

5.10  Routing sub-model and bias-correction 
Preliminary investigations of bias in the WRB SWAT model revealed that phosphorus is not 
stored in stream channels but rather flushes through each reach at the time of 
concentration, and that phosphorus release is not temperature dependent. Rather, only 
rudimentary tools are available in SWAT for addressing this issue (White et al., 2014). In 
reality, some fraction of the upland load is stored in channel sediments, and released at a 
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lagged time period, often in a way that relates to seasonal temperature fluctuations. To 
address the above issue, we developed a methodology for correcting these biases outside of 
the SWAT model. The bias correction was only implemented on SWAT HRU loads and non-
permitted urban loads, but not point-source or MS4 loads. The methodology uses two 
functions to correct SWAT model results. The first function was a decay function that 
allowed loads to persist for a maximum of 8 months within a stream channel: 

Equation 13 

𝑇𝑃𝑎1,𝑚 =∑ 𝑇𝑃0,𝑚
8

𝑙=1
∗ 𝑒(𝑎+𝑏∗𝑙) 

where 𝑇𝑃𝑎1,𝑚 is the first adjusted total phosphorus load for any given month, 𝑇𝑃0,𝑚 is the 
original total phosphorus load for any given month, 𝑙 is the number of months prior to 𝑚, 
and 𝑎 and 𝑏 are calibration coefficients. The second function was a sinusoidal function that 
adjusted loads to a seasonal trend: 

Equation 14 

𝑇𝑃𝑎2,𝑚 = 𝑇𝑃𝑎1,𝑚 ∗ (𝑐 + 𝑑 ∗ sin((
2𝜋

𝑒
) ∗ 𝑚 + 𝑓)) 

where 𝑇𝑃𝑎2,𝑚 is the second adjusted total phosphorus load for any given month, 𝑇𝑃𝑎1,𝑚 is 
the solution to Equation 13, 𝑚 is the month number (e.g., January = 1), and 𝑐, 𝑑, 𝑒, and 𝑓 are 
calibration coefficients that relate to the vertical shift, amplitude, frequency, and phase 
shift of a sinusoidal function, respectively. 

Coefficients 𝑎 through 𝑓 were optimized for each calibration site in the basin using the 
Nelder and Mead (1965) optimization algorithm that minimized the value of a custom 
objective function. The custom objective function was designed to simultaneously address 
seasonal bias as well as overall bias: 

Equation 15 

𝐹 = (1 + 𝑃𝐵𝐼𝐴𝑆) ∗ 𝑅𝑀𝑆𝐸 

Equation 16 

𝑃𝐵𝐼𝐴𝑆 = 
|∑ (𝑇𝑃𝑎2,𝑚 − 𝑇𝑃0,𝑚)𝑖

𝑛
𝑖=1 |

∑ 𝑇𝑃0,𝑚,𝑖
𝑛
𝑖=1

 

Equation 17 

𝑅𝑀𝑆𝐸 = √∑ (𝑇𝑃𝑎2,𝑚 − 𝑇𝑃0,𝑚)
2𝑛

𝑖=1

𝑛
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Each gauge site was fitted with its own set of coefficients (Table 18). At all sites the model 
was fit, the optimization minimized PBIAS to nearly zero (Table 19). For simplicity and 
parsimony, the bias correction model was only fitted at sites without an upstream nested 
gage. 

5.11  Application of Bias Correction to Ungaged Basins 
Fitting coefficients to adjust TP loads at a given site only corrects loads at that given site. 
The adjustments need to be applied to ungaged basins. We applied adjustments to all 
ungaged basins by adjusting HRU flows and loads. Adjusting HRU loads directly will be 
useful for splitting anthropogenic from background loads when calculating load reductions 
for the TMDL. 

For the purpose of adjusting HRU outputs, ungaged basins (and their associated HRUs) 
were linked with their downstream gage location. In cases where a downstream gage site 
was not present, we linked ungaged basins with nearby gages of similar landcover, soil 
type, and slope characteristics using best professional judgment (Figure 27). 

The same methods used to correct bias for TP were also used to correct bias in streamflow 
and TSS. However, streamflow was corrected only using the decay function given that there 
is little evidence from comparisons of Fluxmaster versus SWAT streamflow of an intra-
annual, harmonic pattern of residual error. Summary statistics of streamflow and TSS are 
also shown in Table 19. 

5.12  Comparing SWAT Loads with Grab Sample Data  
The final stage in tributary model calibration and validation was to qualitatively compare 
modeled TP loads to concentrations from grab samples taken from sites around the basin. 
Monthly load calibration sites require large sample sizes for fitting a load model (Section 
5.2.3). However, there are many more sites within the WRB where samples have been 
taken with less frequency and/or consistency. Although the sampling at these sites is 
inadequate for fitting a load model, the data can be used to compare SWAT output to 
aggregate statistics of concentration at a grab sample site. To draw this comparison, at each 
site where grab samples were taken, we first translated SWAT loads into a simulation-wide, 
flow-weighted mean concentration: 

Equation 18 

𝐹𝑊𝑀𝐶 = 
∑ 𝑇𝑃𝑚
144
𝑚

∑ 𝑉𝑚144
𝑚

 

where in month 𝑚, 𝑇𝑃𝑚 is the mass of TP and  𝑉𝑚 is the volume of water to flow past that 
site within that month, summed across all 144 months in the 12-year simulation. Next, we 
calculated growing season medians (May through October) from grab sample data at each 
site, and corrected for variability in temperature and precipitation during the period when 
grab samples were taken. Finally, at each site, we compared the SWAT 𝐹𝑊𝑀𝐶 to the 
corrected growing season median to ensure there were no sites where the deviation was 
qualitatively unreasonable. 
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We found a grouping of sites where this comparison was indeed qualitatively unreasonable 
(See SE Till Plains Omernik Ecoregion in Figure 25). The SE Till Plains ecoregion of the 
WRB was ungaged for TP loads, and the ecological landscape in this region is different than 
its neighbors (i.e. it does not classify neatly as either WCR or CSP ELs). Initially this region 
was lumped with the CSP EL for parsimony, but our FWMC comparison with growing 
season medians showed that we were likely overestimating in this region. After grouping 
this region with the FT EL for parameter adjustment, the 𝐹𝑊𝑀𝐶 estimates from SWAT 
compared much more favorably to growing season median observations. 

5.13  Mainstem TP Transport 
Because the SWAT model was not calibrated to mainstem Wisconsin River stations 
downstream of Merrill, a separate method was needed to estimate transport on the 
mainstem. This section addresses the question: what fraction of tributary TP loads are 
delivered to points downstream? The time scale of the analysis is the average annual load 
over the 2010–13 period when the highest frequency monitoring occurred. 

Because TP load estimates are tightly tied to flow records, we first evaluated the quality of 
the flow records at mainstem stations. There are twelve stations with daily streamflow on 
the mainstem between Merrill and Muscoda. Muscoda is downstream of Lake Wisconsin 
and therefore outside of the study area, but its long term record was useful for validating 
the quality of streamflow data at other gaging stations. Four of the twelve stations are 
operated by the United States Geological Survey (USGS), and are considered to be the most 
accurate. The other stations are operated by hydroelectric companies, most of which report 
data to the Wisconsin Valley Improvement Corporation (WVIC). The data from most of 
these stations is of unknown quality. We first fit a linear regression between mean 
discharge and drainage area for the four USGS gages (Figure 39). We then created a “sum of 
tributaries” flow for each station by summing measured flows where available, and SWAT 
modeled flows on ungauged tributaries. Of the WVIC stations, three (Stevens Point, 
Wisconsin Rapids, and Nekoosa) are closely aligned to the USGS gage regression and 
slightly below the sum of tributaries estimates. Mean flows at the other four WVIC stations 
(Wausau, Dubay, Petenwell, and Castle Rock) are significantly lower than predicted by the 
USGS gage regression and sum of tributaries estimates. Flow at the Prairie du Sac dam, 
which is operated by Alliant Energy, is significantly higher than predicted by the USGS gage 
regression and sum of tributaries estimate. Based on this evaluation, TP load estimates at 
the USGS gages and the three WVIC stations where flows align with the USGS regression 
should be considered most accurate. 

Next, we compared the measured average annual TP load at the Wisconsin Dells station 
(454 mt) to the sum of gauged tributary loads where available, SWAT-estimated loads for 
ungauged areas, and direct discharges to the mainstem (623 mt) (Table 20), giving a net TP 
retention of 27% (73% delivery). To distribute this TP retention through the mainstem, we 
calculated delivery fractions (maximum=1, i.e. no net increase) for reservoir reaches to 
match the pattern in measured TP load, particularly at stations with apparently unbiased 
flow estimates. For example, all of the retention observed between Merrill and Rothschild 
was assumed to happen between Wausau and Rothschild because that reach contains Lake 
Wausau and the TP load estimate at Rothschild is assumed to be more accurate than at 
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Wausau. TP delivery through Lake Dubay was estimated at Stevens Point rather than at the 
Lake Dubay dam because flow at Dubay appears to be underestimated. TP delivery through 
Petenwell and Castle Rock was estimated by matching the observed TP load at Wisconsin 
Dells while assuming 100% delivery between Castle Rock and Wisconsin Dells and 
balancing the differences between measured and predicted loads at the Petenwell and 
Castle Rock dams. Even with 100% delivery, the sum of TP loads between Wisconsin Dells 
and Prairie du Sac (Lake Wisconsin) is underestimated, though this discrepancy is probably 
due to the overestimate of flow at Prairie du Sac. Overall, this process of distributing TP 
retention through the mainstem Wisconsin River produces a pattern that closely matches 
the observed pattern and is consistent with expectations that retention should be generally 
proportional to water residence time (Figure 40). 

6 Model results 
The SWAT model provides model results in various formats. The most commonly used 
spatial scales for output are HRUs, subbasins, and reaches. HRU-level output can be thought 
of as “edge-of-field”, subbasin-level output are the aggregate of all HRUs in a given 
subbasin, and reach output are simulated flows and loads at any given river reach 
associated with a subbasin. SWAT provides the option of creating output at daily, monthly, 
and annual time-steps. There is no one single best way to analyze the results. However, it 
can be useful to aggregate across different axes of space, time, and type of pollutant source 
to assess the model. It can also be useful to analyze both pollutant loads (total mass) and 
yields (i.e. total mass normalized by area). The results described in the following sub-
sections are after correction using the routing sub-model (Section 5.10) 

6.1 Pollutant Yields 
Loads were aggregated to annual average yields per subbasin to illustrate “hot spots” of 
TSS and TP delivery. Yields were calculated as the average annual load divided by the 
subbasin area. 

6.2 Spatial Distribution 
Both TSS and TP follow similar spatial patterns, which is typical because they are both 
strongly correlated with runoff. In general TSS and TP yields are greatest in agricultural 
areas (Figure 29 and Figure 30). However, TSS yields tend to be higher in areas with higher 
slopes, particularly the WCR EL, whereas TP yields are lower in this region than in the 
western FT EL where row cropping is more prevalent (dairy cropping in particular). 

Soils and landscape morphology are also important factors governing pollutant yields. 
Areas with high densities of agriculture may have low pollutant load yields if crops are 
cultivated on highly porous soils, such as the potato/vegetable cultivation areas in the CSP 
EL. Similarly, areas that have more internal drainage (such as the Plover River which is 
located along a remnant glacial terminus) have much lower TSS and TP yields regardless of 
heavy agricultural use. 

It can also be useful to split yield maps by pollutant source type (Figure 30 and Figure 31). 
When split, it illustrates that TSS and TP yields are largely driven by developed (excluding 
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MS4s) and agricultural uses. However, natural areas (forest, grassland, and wetland) can 
also by significant sources of TSS—in the WCR EL, forests and grasslands often deliver 
significant yields of sediment when they are located on very steep slopes. This is not as 
much the case with TP—regardless of slope, natural areas tend to contribute only minimal 
yields due to the lack of fertilizer application. In developed areas, even though there is less 
fertilizer applied, TP yields are still high due to elevated TSS yields and higher runoff in 
general. 

6.3 Temporal Distribution 
Non-point source pollution loads are not evenly distributed over time. There are certain 
times of the year when TSS and TP yields can be 1–2 orders of magnitude greater than 
others (Figure 32 and Figure 33). Agricultural non-point loads tend to be the lowest in 
winter months when the model is simulating snow cover. Runoff tends to be highest in 
early spring (usually beginning in March) when snow begins melting, and with runoff, 
simulated TSS and TP yields are greater. This pattern is particularly evident in March and 
April—for many dairy operations, the model is simulating solid manure applications once 
monthly between January and April, and simulated TP yields tend to be the greatest when 
snow mixed with frozen manure begins to melt (Section 6.4). Summer months also yield 
higher TSS and TP than winter months due to more frequent rain events and greater 
precipitation overall, however plant cover and reduced fertilization result in less pollutant 
yield than in spring months. Simulated TP yields in October are slightly higher due to some 
agricultural operations in the model programmed to fertilize at that time. 

6.4 Categorical Distribution 
To prioritize non-point pollutant reduction, it can be useful to analyze pollutant yields by 
land use and land management (Figure 34, Figure 35, and Figure 36). The model simulates 
the lowest TSS and TP yields from forests, grasslands, and wetlands, with wetlands yielding 
the smallest contribution of TSS, and grasslands yielding the smallest contribution of TP. Of 
the three agriculture types (dairy, cash grain, and potato/vegetable), dairy yields the 
highest TSS and TP, and potato/vegetable yields the lowest TSS and TP. Some of this 
difference is associated with land management (e.g., dairy operations use corn stover for 
silage, which leaves less residue resulting in more erosion). However, some of the 
difference is also associated with location (e.g., potato/vegetable rotations tend to be 
grown on more porous soils). Developed land use yields less TSS than agriculture, but 
higher TSS than all natural landcover types, and yields the second highest TP of all landuse 
types. 

The type of fertilizer used on agricultural fields is also an important determinant of TP 
yield (Figure 36). Solid manure application yields by far the greatest TP due to the timing of 
application being before and during snowmelt in the spring months. Liquid manure 
application occurs in May after most of the snow has melted and soil saturation begins to 
decline, and therefore has TP yields much lower than solid application types. Synthetic 
fertilization has yields nearly an order of magnitude less than solid. This is due in part to 
the timing of application, but also that nutrient ratios in synthetic fertilizers are optimized 
for crop growth, which reduces or stabilizes soil phosphorus concentrations over time. 
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6.5 Loads 
The SWAT model outputs pollutant loads (mass) directly in the default output. The loads 
described in this section are the loads output by SWAT corrected with the routing sub-
model (Section 5.10). 

6.5.1 Relative Contributions by Source Category 
Yields can be informative for identifying “hot spots”. However, the hottest spots may not be 
the problem if they are small and isolated. Instead, it can be useful to look at overall loads 
by source (Table 21). By only analyzing the model using yields, it would lead you to the 
conclusion that natural landuse contribute insignificant pollutant loads, however because 
75% of the basin has a natural landcover, its contribution becomes significant (20% of 
overall TSS load and 18% of overall TP load). The second-most prevalent landcover is 
agriculture, which also has high TSS and TP yields, and therefore agriculture is the 
dominant pollutant source overall (55% of the overall TSS load, and 53% of the overall TP 
load). Within agriculture types, dairy agriculture is the most prevalent (11% of overall 
landuse, compared to 9% other agriculture) and the highest yielding for both TSS and TP, 
and therefore contributes the greatest TSS and TP loads of all agriculture types and all 
other landuses (40% of overall TSS and 44% of overall TP). Urban landuse (MS4 and non-
permitted urban areas) contribute a substantial fraction of the overall TSS loads (19%), 
with a somewhat lesser contribution of the overall TP load (12%). Point sources contribute 
a relatively small fraction of the overall TSS load (5%), but a significant fraction of the 
overall TP load (18%). 

These relative contributions are not spatially uniform, however. Figure 37 and Figure 38 
show the relative contribution of TSS and TP for each landuse category for each reach in 
the SWAT model. For both TSS and TP, the maps of the relative contributions of agriculture 
look much like the maps of yield because in agricultural areas, these sources tend to 
dominate all others. The maps of naturally occurring TSS and TP show that the natural 
sources dominate the NH EL. Point sources generally do not contribute a significant 
fraction of TSS, but for TP they are dominant only when discharging into headwater 
streams. Also, point sources are a significant contributor of TP when accumulated in the 
mainstem of the Wisconsin River. Urban Areas are generally a minority source of TP except 
for a few headwater streams the lie directly below an urbanized area. However, urban 
areas can in many cases be the majority of TSS contribution. 

7 Summary 
Output from the SWAT model described in this report inform the development of TSS and 
TP allocations for  achieving water quality standards for all waterbodies in the WRB. The 
SWAT model was chosen for this purpose, because it allows the integration of point and 
non-point sources, and produces output that segregates controllable and uncontrollable 
pollutant loading sources, which are critical pieces of information for developing TMDL 
allocations.  

The WRB SWAT model was configured to estimate pollutant loading from 337 spatially 
explicit subbasins throughout the basin (Section 3.1). Within each subbasin, the model 
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produced specific results for HRUs, which are discrete combinations of landcover/land-
management (Section 0), soil type (Section 3.3), and topographic slope class (Section 3.4). 
Within an HRU, a hydrologic response is simulated given environmental determinants such 
as weather (Section 3.6) and landscape position (Section 4.5), as well as how the land-
management determinants such as crop rotations (Section 3.2.2), fertilization (Sections 
3.2.5.4 and 4.1.2), and tillage (Section 4.1.1). The resulting simulated surface runoff and 
groundwater (Section 4.8) are then routed through each reach in the Wisconsin River 
network. 

To quantify the performance of the model, we compared SWAT output to monitoring data 
(Section 5). First, we used crop yield estimates from county-level agricultural censuses to 
ensure that plants in the SWAT model were growing appropriately (Section 5.6). We then 
compared simulated streamflow to monitored streamflow at 29 sites (Section 5.7). The 
accuracy of pollutant loads were quantified (Sections 5.9 and 5.10) by comparing SWAT 
loads to a more accurate and precise, site-specific, empirical model that predicts a 
continuous time series of loads using pairs of bi-weekly, instantaneous samples of pollutant 
concentration and streamflow (Section 5.2.3). Using the above comparisons, we calibrated 
the model (Section 5.4) until a satisfactory fit was achieved based on quantitative 
assessments of fit (Section 5.5). Finally, an additional empirical model was created to 
simulate the effects of hydrologic and pollutant routing and reduce model bias (Section 
5.11). 

The final model predictions are exceptionally accurate (See Table 19 in Section 5.10), and it 
is therefore appropriate to use model output for estimating monthly pollutant loads 
between the years of 2002 and 2013, the relative contribution of pollutant loading by 
source, and the prediction of loads for ungaged basins. Due to the exceptional accuracy and 
model detail, the model could also be used for exploring sources of TSS and TP in finer 
detail for watershed and best-management-practice planning. For example, the model 
could be used to prioritize the allocation of resources toward subbasins, soil types, crop 
rotations, fertilization strategies, or specific times of the year (e.g., cover cropping) In 
summary, the model provides the best current comprehensive understanding of sources of 
TSS and TP pollution throughout the WRB, and will therefore be a critical aid in 
implementing the TMDL plan to progress toward water quality improvement.  
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10 Tables 
 

Table 1 Crop classifications from the Cropland Data Layer (CDL) were aggregated into groups of similar crops or 
crops that are often confused in the classification process. 

Aggregated class CDL code CDL class description 

Corn 1 Corn 

Alfalfa 

28 Oats 

36 Alfalfa 

37 Other Hay/Non Alfalfa 

58 Clover/Wildflowers 

Grass/Pasture 176 Grass/Pasture 

Soybeans and 
grains 

4 Sorghum 

5 Soybeans 

21 Barley 

22 Durum Wheat 

23 Spring Wheat 

24 Winter Wheat 

25 Other Small Grains 

27 Rye 

29 Millet 

30 Speltz 

39 Buckwheat 

205 Triticale 

Potatoes 43 Potatoes 

Vegetables 

12 Sweet Corn 

42 Dry Beans 

47 Misc. Vegs & Fruits 

49 Onions 

50 Cucumbers 

53 Peas 

206 Carrots 

216 Peppers 
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Table 2 Decision rules used to classify crop sequences into generalized agricultural rotation types. The 
conditions were tested hierarchically in the order they are listed in the table. That is, the test for pasture 
(the last in the table) could only be met if all tests above returned false. Each symbol represents a set of 
crop types: C = corn (including sweet corn pre-local knowledge); S = soybeans; P = potatoes; DB = dry beans; 
V = onions, cucumbers, peas, carrots, peppers, sweet corn (not including sweet corn post-local knowledge); 
A = alfalfa, sorghum, barley, durum wheat, spring wheat, winter wheat, other small grains, rye, oats, millet, 
speltz, buckwheat, clover/wildflowers, triticale; Pas = other hay/non-alfalfa, pasture/grass, pasture/hay. 

Rotation 
Ordered ruleset  

Pre-local knowledge Post-local knowledge  

Continuous Corn C >= 4 year 
C >= 3 years 

No S, P, V, A, Pas 
 

Cash Grain 
C >=1 year 
S >= 1 year 

C and S >= 3 year 

C and S >= 2 years 
No P, V, A, Pas 

 

Corn / Dry Beans 
C >= 2 year 

DB >= 2 year 
  

Dry Beans 
DB >= 2 years 
A >= 2 years 
No C, S, P, V 

 
 

Dairy 
(Generic) 

 A and Pas >= 1 year 
C and S > = 1 year 

 

Dairy  
(1 year C, 1 year S) 

C = 1 year 
S = 1 year 

A => 1 year 
No P, V, DB 

 

 

Dairy  
(2 year C) 

C = 2 years 
A => 1 years 
No P, V, DB 

 
 

Dairy 
(1 year C, 2 Year S) 

C = 1 years 
S => 2 years 

A => 1 of 5 years 
No P, V, DB 

 

 

Dairy 
(2 year C, 1 Year S) 

C >= 2 years 
S >= 1 year 

C and S >= 2 years 
A => 1 year 
No P, V, DB 

 

 

Dairy 
(3 year C) 

C = 3 years 
A >= 1 year 
No P, V, DB 

 
 

Dairy 
(No Corn) 

S >= 1 year 
A >= 1 year 

No C, P, V, DB 

 
 

Dairy/Potato 

C>= 1 year 
P >= 1 year 
A >= 1 year 
No S, V, DB 

P >= 1 year 
A >= 1 year 

No V 

 

Potato 
P >= 2 years 
N C, S, DB, V 

  

Potato/Veg.  P and V >= 1 year  

Potato/Corn 
C>= 1 year 
P >= 1 year 

C + P > = 4 years 

 
 

Potato/Corn/Dry Beans 
C >= 1 year 
P >= 1 year 

DB > = 1 year 
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Table 2 Decision rules used to classify crop sequences into generalized agricultural rotation types. The 
conditions were tested hierarchically in the order they are listed in the table. That is, the test for pasture 
(the last in the table) could only be met if all tests above returned false. Each symbol represents a set of 
crop types: C = corn (including sweet corn pre-local knowledge); S = soybeans; P = potatoes; DB = dry beans; 
V = onions, cucumbers, peas, carrots, peppers, sweet corn (not including sweet corn post-local knowledge); 
A = alfalfa, sorghum, barley, durum wheat, spring wheat, winter wheat, other small grains, rye, oats, millet, 
speltz, buckwheat, clover/wildflowers, triticale; Pas = other hay/non-alfalfa, pasture/grass, pasture/hay. 

Rotation 
Ordered ruleset  

Pre-local knowledge Post-local knowledge  

Potato/Corn/Soybean 
C >= 1 year 
P >= 1 year 
S > = 1 year 

 
 

Potato/Corn/Veg. 
P >= 1 year 
V >= 1 year 
C >= 1 year 

A and Pas >= 1 year 
C and S > = 1 year 

 

Pasture 
Pas and A >= 4 years 

No C, S, P, V, DB 
Pas and A >= 2 years 

No C, S, P, V 
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Table 3 Comparison of distribution of crop rotations between transects and our (WDNR) approach described in 
Sections 3.2.1 through 3.2.4. 

Rotation Type 
Transect 

Count 
Transect 

(%) 

WDNR 
Approach 
Acreage 

WDNR 
Approach 

(%) 

Cash Grain 608 23 309,000 20 

Dairy 946 36 633,000 40 

Pasture/Hay 414 16 447,000 28 

Potato/Vegetable 68 3 188,000 12 

Insufficient 581 22 - - 

Total 2,617 100 1,577,000 100 
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Table 4 The agricultural land cover classes represented within SWAT are shown here with the class of land use 
and land management. The rotation codes are Cg=corn grain, Cs=corn silage, So=soybean, Po=potato, 
Vg=vegetable, A=Alfalfa, O/A=oats/alfalfa. Tons are English tons. Note that the SWAT Landuse is a code used by 
SWAT and is a placeholder for unique agricultural practices and are not truly representative of the landcover and 
is only included here for reference. 

SWAT Landuse Type Definition 

SWHT  Dairy  Cg-Cs-O/A-A-A-A - Spring Chisel – 10,000 ga/acre/year Liquid Manure 

WWHT  Dairy  O/A-A-A-A-Cg-Cs - Spring Chisel – 10,000 ga/acre/year Liquid Manure 

DWHT  Dairy  A-A-Cg-Cs-O/A-A - Spring Chisel – 10,000 ga/acre/year Liquid Manure 

RYE  Dairy  Cg-Cs-O/A-A-A-A - Spring Chisel - 25 tons/acre/year Solid Manure 

BARL  Dairy  O/A-A-A-A-Cg-Cs - Spring Chisel - 25 tons/acre/year Solid Manure 

OATS  Dairy  A-A-Cg-Cs-O/A-A - Spring Chisel - 25 tons/acre/year Solid Manure 

RICE  Dairy  Cg-O/A-A-A-A-A - Spring Chisel - 25 tons/acre/year Solid Manure 

PMIL  Dairy  A-A-A-A-Cg-O/A - Spring Chisel - 25 tons/acre/year Solid Manure 

TIMO  Dairy  A-A-Cg-O/A-A-A - Spring Chisel - 25 tons/acre/year Solid Manure 

BROS  Dairy  Cg-Cs-O/A-A-A-A - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

BROM  Dairy  O/A-A-A-A-Cg-Cs - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

FESC  Dairy  A-A-Cg-Cs-O/A-A - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

BLUG  Dairy  Cg-Cs-O/A-A-A-A - Fall Chisel - 25 tons/acre/year Solid Manure 

BERM  Dairy  O/A-A-A-A-Cg-Cs - Fall Chisel - 25 tons/acre/year Solid Manure 

CWGR  Dairy  A-A-Cg-Cs-O/A-A - Fall Chisel - 25 tons/acre/year Solid Manure 

WWGR  Dairy  Cs-Cs-O/A-A-A-A - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

SWGR  Dairy  O/A-A-A-A-Cs-Cs - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

RYEG  Dairy  A-A-Cs-Cs-O/A-A - Fall Chisel – 10,000 ga/acre/year Liquid Manure 

RYER  Dairy  Cs-Cs-O/A-A-A-A - Fall Chisel - 25 tons/acre/year Solid Manure 

RYEA  Dairy  O/A-A-A-A-Cs-Cs - Fall Chisel - 25 tons/acre/year Solid Manure 

SIDE  Dairy  A-A-Cs-Cs-O/A-A - Fall Chisel - 25 tons/acre/year Solid Manure 

BBLS  Dairy  Cs-Cs-O/A-A-A-A - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

LBLS  Dairy  O/A-A-A-A-Cs-Cs - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

SWCH  Dairy  A-A-Cs-Cs-O/A-A - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

INDN  Dairy  Cs-Cs-O/A-A-A-A - Fall MB Plow - 25 tons/acre/year Solid Manure 

ALFA  Dairy  O/A-A-A-A-Cs-Cs - Fall MB Plow - 25 tons/acre/year Solid Manure 

CLVS  Dairy  A-A-Cs-Cs-O/A-A - Fall MB Plow - 25 tons/acre/year Solid Manure 

CLVR  Dairy  Cg-Cs-O/A-A-A-A - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

CLVA  Dairy  O/A-A-A-A-Cg-Cs - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

SOYB  Dairy  A-A-Cg-Cs-O/A-A - Fall MB Plow – 10,000 ga/acre/year Liquid Manure 

CWPS  Dairy  Cg-Cs-O/A-A-A-A - Fall MB Plow - 25 tons/acre/year Solid Manure 

MUNG  Dairy  O/A-A-A-A-Cg-Cs - Fall MB Plow - 25 tons/acre/year Solid Manure 

LIMA  Dairy  A-A-Cg-Cs-O/A-A - Fall MB Plow - 25 tons/acre/year Solid Manure 

LENT  Cash Grain  Cg-Cg-So-Cg-Cg-So - Fall Chisel/Spring Disk 

PNUT  Cash Grain  Cg-So-Cg-Cg-So-Cg - Fall Chisel/Spring Disk 

FPEA  Cash Grain  So-Cg-Cg-So-Cg-Cg - Fall Chisel/Spring Disk 

PEAS  Cash Grain  Cg-So-Cg-So-Cg-So - Fall Chisel/Spring Disk 

SESB  Cash Grain  So-Cg-So-Cg-So-Cg - Fall Chisel/Spring Disk 

COTS  Cash Grain  Cg-So-Cg-So-Cg-So - No Till 

COTP  Cash Grain  So-Cg-So-Cg-So-Cg - No Till 

SGBT  Potato/Vegetable  Po-Vg-Vg-Po-Vg-Vg - Deep Till Potato Years/Cultivate Vegetable Years 

POTA  Potato/Vegetable  Vg-Po-Vg-Vg-Po-Vg - Deep Till Potato Years/Cultivate Vegetable Years 

SPOT  Potato/Vegetable  Vg-Vg-Po-Vg-Vg-Po - Deep Till Potato Years/Cultivate Vegetable Years 

ONIO  Cranberries  Continuous cranberry bog (treated as herbaceous wetlands) 

CRRT  Pasture/Hay  Continuous Grasses 
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Table 5 Soil attributes used in SWAT and the methods used to cluster SSURGO map units. The listed soil 
attributes are all soil properties used in SWAT. Not all these properties were used to cluster soil map units. The 
aggregation method is the aggregation function used to simplify the properties used in the clustering algorithm. 
Also listed are the original tables where the soil properties are located in SSURGO. 

 

Variable Used in clustering? Aggregation method SSURGO table Column name 

Albedo dry No surface horizon component albedodry_r 
Available water capacity (cm/cm) Yes depth-weighted mean chorizon awc_r 
Bulk density (g/cm2) No depth-weighted mean chorizon dbovendry_r 
Calcium carbonate (%) No depth-weighted mean chorizon caco3_r 
Clay (%) Yes depth-weighted mean chorizon claytotal_r 
Electric conductivity (dS/m) No depth-weighted mean chorizon ec_r 
Horizon depth (mm) No Sum of all horizons chorizon hzdepb_r 
Hydrologic soil group Yes category component hydgrp_r 
Organic carbon (%) No depth-weighted mean chorizon cbn_r 
pH No depth-weighted mean chorizon ph1to1h2o_r 
Rock fragments (%) No depth-weighted mean chfrags fragvol_r 
Sand (%) Yes depth-weighted mean chorizon sandtotal_r 
Saturated conductivity (µm/sec) Yes depth-weighted mean chorizon ksat_r 
Silt (%) No depth-weighted mean chorizon silttotal_r 
USLE erodibility Yes depth-weighted mean chorizon usle_kwfact 
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Table 6 Statewide and municipality-specific datasets used to define urban model area extent. 

 

Model Area  Dataset 

City and Village Municipal limits  
TIGER Minor Civil Divisions (“State-based”) with PL 
94-171 Attributes 

Urbanized Areas  TIGER 2010 Urban Areas Western Great Lakes 

Open Water 
Open water features (i.e. lakes, reservoirs, wide 
streams, and rivers) as defined by the USGS 1:24,000 
National Hydrography Dataset 

Marathon County City/Village/Town Limits  Marathon County Planning and Zoning 

City of Baraboo Municipal Limits  City of Baraboo Public Works/Engineering 

City of Marshfield Municipal Limits  City of Marshfield Engineering 

City of Wisconsin Rapids Municipal Limits  City of Wisconsin Rapids Engineering 
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Table 7 Manning’s 𝒏 values used for overland flow based on specific landcovers. 

Landcover Manning’s 𝑛 

Developed, Open Space 0.054 
Deciduous Forest 0.36 
Evergreen Forest 0.32 
Mixed Forest 0.4 
Grassland/Pasture 0.35 
Wetlands 0.18 
Chisel 0.11 
Moldboard 0.1 
Spring Disk 0.4 
Deep Till 0.3 
No Till 0.12 
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Table 8 Summary statistics of Fluxmaster (Schwarz et al., 2006) load estimation models of total suspended solids (TSS). Identification numbers are 
associated with the National Water Information System (NWIS, USGS, 2014). The start and end dates denote the times when sampling occurred, but the 
sampling may not have been regular within that period (i.e., there may be two or more periods of regular sampling). The loads reported are in units of 
gigagrams (thousands of metric tons) per year (mean for years 2011–13). The columns O/E and SE report the average ratio of observed versus estimated 
loads and standard errors, respectively. The value in the par. column represents how many parameters were used in the regression. Sites with which 
there are no summary statistics means that either there was insufficient data to fit the model, or that the terms in the model did not explain the 
variability in load. 

Station Name NWIS ID 
Total Suspended Solids 

n start end load (Gg/yr) O/E SE par. 

Baraboo River at Main Street, Reedsburg, WI 054041665 55 15-Sep-2011 5-Nov-2013 11,665 0.90 21.24 7 

Baraboo River near Baraboo, WI 05405000 177 10-Jan-2002 18-Dec-2013 18,837 0.80 11.76 7 

Big Eau Pleine River at Big Eau Pleine Dam 05399600 97 14-Oct-2009 25-Nov-2013 2,660 1.28 12.62 7 

Big Eau Pleine River at Stratford, WI 05399500 138 14-Jul-2005 25-Nov-2013 5,985 0.95 29.36 5 

Big Rib River at Rib Falls, WI 05396000 92 12-Apr-2010 8-Oct-2013 2,827 1.30 23.21 7 

Big Roche a Cri Creek at Hwy 21 05401556 91 12-May-2010 7-Nov-2013 320 1.06 9.25 7 

Eau Claire River at Kelly, WI 05397500 94 12-Apr-2010 8-Nov-2013 1,842 1.05 14.87 7 

Fenwood Creek at Bradley, WI 05399550 94 14-Oct-2009 16-Dec-2013 224 1.00 32.25 5 

Freeman Creek at Halder, WI 05399580 93 14-Oct-2009 25-Nov-2013 222 0.94 28.12 7 

Lemonweir at New Lisbon 05403500 89 13-May-2010 5-Nov-2013 2,577 1.03 6.59 7 

Little Eau Pleine River near Rozellville, WI 05400220 91 27-Apr-2010 8-Nov-2013 1,154 0.97 18.60 7 

Mill Creek at County Hwy PP 05400718 93 13-Apr-2010 8-Nov-2013 501 1.02 20.35 7 

Mill Creek near Hewitt, WI 05400664 28 21-Feb-2002 26-Nov-2002 629 0.99 31.28 7 

Mill Creek near Junction City, WI 05400705 22 21-Feb-2002 26-Nov-2002 804 0.72 22.64 7 

Pine River at Center Avenue near Merrill, WI 05395063 90 26-Apr-2010 8-Oct-2013 578 0.96 25.37 7 

Plover River at Hwy 10/66 05400513 97 13-Apr-2010 8-Nov-2013 759 1.00 9.67 5 

Prairie River near Merrill, WI 05394500 97 22-Oct-2009 8-Oct-2013 1,257 1.02 16.04 5 

Spirit River at Spirit  Falls 05393500 22 10-Mar-2005 14-Sep-2010 — — — — 

Spirit River at Spirit River Dam 05393600 1 4-Jun-2013 4-Jun-2013 — — — — 

Ten Mile Creek near Nekoosa 05401050 100 17-Nov-2009 7-Nov-2013 500 0.98 10.59 7 

West Branch of Baraboo River at Hillsboro, WI 05404116 52 23-Aug-2005 25-Apr-2013 771 1.38 33.21 7 

Wisconsin River at Castle Rock Dam 05403200 3 30-Nov-2009 3-Aug-2011 — — — — 
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Table 8 Summary statistics of Fluxmaster (Schwarz et al., 2006) load estimation models of total suspended solids (TSS). Identification numbers are 
associated with the National Water Information System (NWIS, USGS, 2014). The start and end dates denote the times when sampling occurred, but the 
sampling may not have been regular within that period (i.e., there may be two or more periods of regular sampling). The loads reported are in units of 
gigagrams (thousands of metric tons) per year (mean for years 2011–13). The columns O/E and SE report the average ratio of observed versus estimated 
loads and standard errors, respectively. The value in the par. column represents how many parameters were used in the regression. Sites with which 
there are no summary statistics means that either there was insufficient data to fit the model, or that the terms in the model did not explain the 
variability in load. 

Station Name NWIS ID 
Total Suspended Solids 

n start end load (Gg/yr) O/E SE par. 

Wisconsin River at Chuck's Landing 05398000 — — — — — — — 

Wisconsin River at Herb Mitchell Landing — — — — — — — — 

Wisconsin River at Lake DuBay Dam 05400295 12 11-Oct-2006 11-Sep-2007 — — — — 

Wisconsin River at Merrill, WI 05395000 129 8-Jan-2002 12-Dec-2013 8,792 0.96 7.78 7 

Wisconsin River at Nekoosa Dam 05400975 — — — — — — — 

Wisconsin River at Rainbow Lake 05391000 — — — — — — — 

Wisconsin River at Rhinelander 05391090 30 6-May-1999 11-Dec-2001 1,240 0.97 3.67 7 

Wisconsin River at Rothschild, WI 05398000 — — — 
   

 

Wisconsin River at Stevens Point Dam 05400320 5 20-Jan-2009 8-Sep-2009 — — — — 

Wisconsin River at Wausau Dam 05395300 — — — — — — — 

Wisconsin River at Wisconsin Dells 05404000 132 10-Jan-2002 18-Dec-2013 47,959 0.94 9.21 7 

Wisconsin River at Wisconsin Rapids 05400760 111 22-Jan-2002 20-Nov-2013 49,802 0.92 9.44 7 

Wisconsin River below Prairie du Sac Dam 05405990 — — — — — — — 

Yellow River at Babcock 05402000 47 13-Oct-2010 4-Sep-2012 3,311 1.15 14.56 7 

Yellow River at Hwy 21 05403000 90 12-May-2010 7-Nov-2013 2,769 0.98 12.96 7 
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Table 9 Summary statistics of Fluxmaster (Schwarz et al., 2006) load estimation models of total phosphorus (TP). Identification numbers are associated 
with the National Water Information System (NWIS, USGS, 2014). The start and end dates denote the times when sampling occurred, but the sampling 
may not have been regular within that period (i.e., there may actually be two or more periods of regular sampling). The loads reported are in units of 
megagrams (metric tons) per year (mean for years 2011–13). The columns O/E and SE report the average ratio of observed versus estimated loads and 
standard errors, respectively. The value in the par. column represents how many parameters were used in the regression. 

Station Name NWIS ID 
Total Phosphorus 

n start end load (Mg/yr) O/E SE par. 

Baraboo River at Main Street, Reedsburg, WI 054041665 66 15-Sep-2011 5-Nov-2013 50 0.99 8.1 7 

Baraboo River near Baraboo, WI 05405000 175 10-Jan-2002 18-Dec-2013 77 1.02 5.2 7 

Big Eau Pleine River at Big Eau Pleine Dam 05399600 99 14-Oct-2009 25-Nov-2013 33 1.00 7.5 7 

Big Eau Pleine River at Stratford, WI 05399500 147 22-May-2002 25-Nov-2013 65 1.04 14.2 7 

Big Rib River at Rib Falls, WI 05396000 93 12-Apr-2010 4-Nov-2013 37 1.00 13.1 5 

Big Roche a Cri Creek at Hwy 21 05401556 90 12-May-2010 7-Nov-2013 3 0.97 4.8 5 

Eau Claire River at Kelly, WI 05397500 99 22-May-2002 8-Nov-2013 20 1.02 16.9 7 

Fenwood Creek at Bradley, WI 05399550 96 14-Oct-2009 16-Dec-2013 4 0.89 15.9 5 

Freeman Creek at Halder, WI 05399580 94 14-Oct-2009 25-Nov-2013 2 1.01 18.9 5 

Lemonweir at New Lisbon 05403500 88 13-May-2010 5-Nov-2013 50 0.97 5.2 7 

Little Eau Pleine River near Rozellville, WI 05400220 91 27-Apr-2010 8-Nov-2013 30 1.05 7.7 5 

Mill Creek at County Hwy PP 05400718 93 13-Apr-2010 8-Nov-2013 20 1.09 9.4 7 

Mill Creek near Hewitt, WI 05400664 31 21-Feb-2002 26-Nov-2002 7 1.12 10.7 7 

Mill Creek near Junction City, WI 05400705 25 21-Feb-2002 26-Nov-2002 23 0.98 14.7 7 

Pine River at Center Avenue near Merrill, WI 05395063 91 26-Apr-2010 4-Nov-2013 6 1.00 10.5 5 

Plover River at Hwy 10/66 05400513 96 13-Apr-2010 8-Nov-2013 5 1.02 5.2 7 

Prairie River near Merrill, WI 05394500 98 22-Oct-2009 4-Nov-2013 12 1.03 5.9 5 

Spirit River at Spirit  Falls 05393500 31 21-May-2002 14-Sep-2010 7 0.95 12.2 7 

Spirit River at Spirit River Dam 05393600 92 12-Apr-2010 4-Nov-2013 7 1.07 4.7 7 

Ten Mile Creek near Nekoosa 05401050 102 17-Nov-2009 7-Nov-2013 3 1.01 3.3 7 

West Branch of Baraboo River at Hillsboro, WI 05404116 52 23-Aug-2005 25-Apr-2013 4 1.06 24.2 7 

Wisconsin River at Castle Rock Dam 05403200 101 17-Nov-2009 7-Nov-2013 326 0.97 4.3 7 

Wisconsin River at Chuck's Landing 05398000 93 13-Apr-2010 8-Nov-2013 232 1.03 3.4 7 

Wisconsin River at Herb Mitchell Landing — 93 12-Apr-2010 4-Nov-2013 82 1.01 1.8 7 
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Table 9 Summary statistics of Fluxmaster (Schwarz et al., 2006) load estimation models of total phosphorus (TP). Identification numbers are associated 
with the National Water Information System (NWIS, USGS, 2014). The start and end dates denote the times when sampling occurred, but the sampling 
may not have been regular within that period (i.e., there may actually be two or more periods of regular sampling). The loads reported are in units of 
megagrams (metric tons) per year (mean for years 2011–13). The columns O/E and SE report the average ratio of observed versus estimated loads and 
standard errors, respectively. The value in the par. column represents how many parameters were used in the regression. 

Station Name NWIS ID 
Total Phosphorus 

n start end load (Mg/yr) O/E SE par. 

Wisconsin River at Lake DuBay Dam 05400295 105 11-Oct-2006 8-Nov-2013 300 1.04 7.6 7 

Wisconsin River at Merrill, WI 05395000 182 8-Jan-2002 12-Dec-2013 126 1.02 3.2 7 

Wisconsin River at Nekoosa Dam 05400975 114 29-Oct-2008 7-Nov-2013 415 1.03 4.1 7 

Wisconsin River at Rainbow Lake 05391000 27 28-Jul-1999 29-Nov-2001 14 1.06 4.9 7 

Wisconsin River at Rhinelander 05391090 32 6-May-1999 11-Dec-2001 16 0.99 2.4 7 

Wisconsin River at Rothschild, WI 05398000 93 12-Apr-2010 8-Nov-2013 221 0.99 3.4 7 

Wisconsin River at Stevens Point Dam 05400320 104 16-Oct-2008 8-Nov-2013 308 1.01 3.4 7 

Wisconsin River at Wausau Dam 05395300 93 12-Apr-2010 4-Nov-2013 136 1.02 3.5 7 

Wisconsin River at Wisconsin Dells 05404000 174 10-Jan-2002 18-Dec-2013 428 1.00 3.9 7 

Wisconsin River at Wisconsin Rapids 05400760 171 22-Jan-2002 20-Nov-2013 331 0.98 3.7 7 

Wisconsin River below Prairie du Sac Dam 05405990 90 14-Apr-2010 5-Nov-2013 561 0.97 5.8 7 

Yellow River at Babcock 05402000 53 13-Oct-2010 26-Sep-2012 43 1.04 12.1 7 

Yellow River at Hwy 21 05403000 90 12-May-2010 7-Nov-2013 47 1.00 6.8 5 
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Table 10 List of parameters used in sensitivity analysis, how often they were used for calibration in the 21 
studies that were reviewed, the parameter range that was analyzed, and how the parameters were adjusted. The 
letters “r” and “u” in the Adjustment column denote whether the parameter was adjusted relative to its original 
value, or if the value was set uniformly, respectively. The value listed for relative adjustments is the percent 
added or subtracted from the original value. 

SWAT 
Parameter 

Description Citations Low High Adjustment 

CN2/CNOP Curve number 19 -50 50 r 

SOL_AWC Soil available water capacity 16 -50 50 r 

ESCO Soil evaporation compensation factor 15 0 1 u 

SOL_K Soil hydraulic conductivity 13 -50 50 r 

ALPHA_BF Baseflow alpha factor 12 0 1 u 

CH_K(1,2) Channel hydraulic conductivity 12 -0.01 150 u 

CH_N(1,2) Channel Manning’s N 11 0 0.5 u 

GWQMN Threshold of shallow groundwater for return flow 11 0 5000 u 

GW_DELAY Groundwater delay time 10 0 500 u 

SLSUBBSN HRU slope length 10 -50 50 r 

HRU_SLP HRU slope 9 -50 50 r 

SURLAG Surface runoff lag coefficient 9 0 15 u 

GW_REVAP Groundwater revap coefficient 8 0.02 0.2 u 

USLE_P USLE practice factor 8 0 1 u 

BIOMIX Biological mixing efficiency 7 0 1 u 

CANMX Maximum canopy storage 7 0 100 u 

CH_COV(1,2) Channel cover factor, erodibility 7 0 1 u 

EPCO Plant uptake compensation factor 7 0.001 1 u 

RCHRG_DP Deep aquifer percolation factor 7 0 1 u 

SFTMP Snowfall temperature 7 -10 5 u 

SPCON Re-entrainment of channel sediment, linear parameter 7 0.0001 0.05 u 

CH_ERODMO Channel erodibility by month 6 0 1 u 

REVAPMN Threshold of shallow groundwater for revap 6 0 500 u 

SPEXP Re-entrainment of channel sediment, exponential parameter 6 1 2 u 

OV_N Overland Manning’s N 5 0.1 0.3 u 

SMTMP Snowmelt temperature 5 -2 20 u 

SOL_ALB Soil albedo 5 -20 20 r 

SOL_Z Soil depth 5 -50 50 r 

TIMP Snow pack temperature lag factor 5 0.01 1 u 

SMFMN Melt factor for snow on June 21 4 0 10 u 

SMFMX Melt factor for snow on December 21 4 0 10 u 

SOL_BD Soil bulk density 4 -50 50 r 

USLE_K USLE soil erodibility factor 4 -50 100 r 

BLAI Maximum potential leaf area index 3 -50 50 r 

USLE_C USLE cover factor 3 -20 20 r 

CH_S(1,2) Channel slope 2 -50 100 r 

FILTERW Width of edge-of-field filter strip 2 0 10 u 

PPERCO Phosphorus percolation coefficient 2 10 17.5 u 

SOL_ORGP Soil organic phosphorus concentration 2 0 4000 u 

SOL_LABP Soil labile phosphorus concentration 2 0 100 u 

ALPHA_BNK Baseflow alpha factor for bank storage 1 0 1 u 

CMN Rate factor for humus mineralization of organic nutrients 1 0.001 0.003 u 

EVRCH Reach evaporation adjustment factor 1 0.5 1 u 

ERORGP Phosphorus enrichment ratio for loading with sediment 1 2 4 u 

PHOSKD Phosphorus soil partitioning coefficient 1 100 200 u 
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Table 11 Adjusted plant growth parameters for modeled crops (with plant database identification code and 
default values in parentheses).   

Crop 
(SWAT code) 

SWAT Parameter 

BIO_E BLAI CHTMX HVSTI T_BASE T_OPT 

((kg/ha)/(MJ/m2)) m2/m2 (m) (yield/biomass) (°C) (°C) 

Alfalfa (52) 8 (20) 3 (4) 
    

Corn Grain (19) 37 (39) 6.5 (3) 
    

Corn Silage (20)   40 (39) 6.5 (4) 
    

Soybean (56) 39 (25) 6.5 (3) 
  

9 (10) 27 (25) 

Potato   (70) 32 (20) 5.5 (4) 
    

Green Bean (84) 41 (25) 6.5 (1.5) 1 (0.6) 0.65 (0.1) 7 (10) 30 (19) 

Sweet Corn (21)  44  (39) 6.5 (2.5) 
 

0.65 (0.5) 8 (12) 29 (24) 
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Table 12 SWAT crop yields (Megagrams per hectare), converted- SWAT crop yields (common US crop metric), 
and National Agricultural Statistics Survey (NASS) crop yields. Estimated yields are reported as the average 
annual yield from 2002–2013. Estimated yields are converted to US yields based on the common metric 
conversion factor and moisture percentage they are commonly reported as within the US. 

Crop 
Estimated Yield 

(Mg/ha) 
Estimate yield 

(US units) 
US Units 

Moisture 
Content 

(%) 

Conversion 
Factor 

NASS Yields 
(US Units) 

Alfalfa, hay 5.9 2.6 short tons/acre, dry 0.0 0.45 2.6 

Corn 7.7 146 bushels/acre 15.5 15.9 145 

Corn silage 13.2 17 short tons/acre, moist 65.0 0.45 17 

Soybeans 2.4 41 bushels/acre 13.0 14.9 41 

Potatoes 9.5 423 hundredweight/acre 80.0 8.9 425 

Green beans 1.0 4.6 short tons/acre, moist 90.0 0.45 4.3 

Sweet corn 3.5 6.2 short tons/acre, moist 75.0 0.45 7.5 
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Table 13 U.S. Geological Survey (USGS) and Wisconsin Valley Improvement Company (WVIC, note that these sites 
do not have an identification number) gage sites chosen for calibration of streamflow, total suspended solids 
(TSS), and total phosphorus (TP). A “Y” indicator represents if the data was available and used in calibration, and 
an “N” indicator represents if the data was available, but not used in calibration. The ecoregion column contains 
values associated with one or more of the Ecological Landscapes that are within the watershed that drains to the 
station. (WCR = Western Coulees and Ridges, FT = Forest Transition, CSP = Central Sand Plains, NH = Northern 
Highlands). Cells marked with an asterisk are sites where flow is heavily regulated by dam operators, and 
therefore streamflow was visually inspected to ensure on overall water budget fit, but monthly fit was not 
quantitatively assessed. 

Station Name Ecoregion USGS NWIS ID Streamflow TSS TP 

Baraboo River at Main Street, Reedsburg, WI WCR 05405000 Y Y Y 

Baraboo River near Baraboo, WI WCR 054041665 Y Y Y 

Big Eau Pleine River at Big Eau Pleine Dam FT 05399600 * N N 

Big Eau Pleine River at Stratford, WI FT 05399500 Y N Y 

Big Rib River at Rib Falls, WI FT 05396000 Y N Y 

Big Roche a Cri Creek at Hwy 21 CSP 05401556 Y Y Y 

Eau Claire River at Kelly, WI FT 05397500 Y Y Y 

Fenwood Creek at Bradley, WI FT 05399550 Y N Y 

Freeman Creek at Halder, WI FT 05399580 Y N Y 

Lemonweir at New Lisbon CSP/WCR 05403500 Y Y Y 

Link Creek NH 05392083 Y – Y 

Little Eau Pleine River near Rozellville, WI FT 05400220 Y Y Y 

Mill Creek at County Hwy PP FT 05400718 Y Y Y 

Muskellunge Creek, Muskellunge Lake Outlet NH 05390680 Y – Y 

Pine River at Center Avenue near Merrill, WI FT 05395063 Y N Y 

Plover River at Hwy 10/66 FT 05400513 Y Y Y 

Prairie River near Merrill, WI FT 05394500 Y Y Y 

Spirit River at Spirit  Falls FT 05393500 Y N Y 

Spirit River at Spirit River Dam FT 05393600 * – N 

Ten Mile Creek near Nekoosa CSP 05401050 Y Y Y 

West Branch of Baraboo River at Hillsboro, WI WCR 05404116 Y N N 

Wisconsin River at Castle Rock Dam NH/FT/CSP 05403200 Y – N 

Wisconsin River at Lake DuBay Dam NH/FT 05400295 Y – Y 

Wisconsin River at Merrill, WI NH/FT 05395000 Y Y Y 

Wisconsin River at Nekoosa Dam NH/FT/CSP 05400975 Y – Y 

Wisconsin River at Petenwell Dam NH/FT/CSP 05401400 Y – N 

Wisconsin River at Rothschild, WI NH/FT 05398000 Y – Y 

Wisconsin River at Stevens Point Dam NH/FT/CSP 05400320 Y – Y 

Wisconsin River at Wisconsin Dells NH/FT/CSP 05404000 N N N 

Wisconsin River at Wisconsin Rapids NH/FT/CSP 05400760 Y N N 

Wisconsin River below Prairie du Sac Dam NH/FT/CSP/WCR 05405990 N – N 

Wisconsin River Kings Dam NH/FT WVIC * – – 

Wisconsin River at Herb Mitchell Landing NH/FT WVIC * – – 

Wisconsin River Rhinelander NH/FT 05391090 * – – 

Yellow River at Babcock FT 05402000 Y Y Y 

Yellow River at Hwy 21 FT/CSP 05403000 Y Y Y 
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Table 14 Basin-wide parameter adjustments. A “u” adjustment represents a uniform value parameter 
adjustment, and an “r” adjustment represents a relative scalar adjustment. For uniform adjustments, the 
parameters was set at its value basin-wide, but for relative adjustments, the value represents the proportion 
increase (i.e. the final value will be equal to (𝟏 + 𝐯)𝐬 where 𝐯 is the original parameter value and  𝒔 is the scalar 
listed here. The filter denotes elements that were modified—if none is listed, the parameter adjustment applied 
to all. 

Parameter Adjustment Filter Value 

SMTMP u 
 

-0.2 

SFTMP u 
 

-0.2 

TIMP u 
 

0.2 

SMFMN u 
 

0.8 

SMFMX u 
 

3.2 

SNOCOVMX u 
 

40 

SNO50COV u 
 

0.5 

CH_W2 r 
 

-0.6 

CH_W1 r 
 

-0.7 

CH_D r 
 

-0.7 

CH_S1 r 
 

0.8 

CH_S2 r 
 

0.8 

HRU_SLP u Wetlands 0.005 

SLSUBBSN u Wetlands 90 

OV_N u Grasslands 0.3 

SPCON u 
 

0.001 

SPEXP u 
 

1.7 

ADJ_PKR u 
 

0.8 

USLE_P u Agriculture and urban 0.4 

USLE_P u Open water 0.001 

USLE_C u Agriculture 0.1 

HEAT_UNITS u Grasslands 2200 

HVSTI u Grasslands 0.75 

FILTERW u Forest/Wetlands 7 
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Table 15 Parameter adjustments by Ecological Landscape (WDNR, 2012). Parameter adjustment values are listed 
under each Ecological Landscape abbreviation (WCR = Western Coulees and Ridges, FT = Forest Transition, CSP = 
Central Sand Plains, NH = Northern Highlands). A “u” adjustment represents a uniform value parameter 
adjustment, and an “r” adjustment represents a relative scalar adjustment. For uniform adjustments, the 
parameters was set at its value basin-wide, but for relative adjustments, the value represents the proportion 
increase (i.e. the final value will be equal to (𝟏 + 𝒗)𝒔 where 𝒗 is the original parameter value and  𝒔 is the scalar 
listed here. The filter denotes elements that were modified—if none is listed, the parameter adjustment applied 
to all. 

Parameter Adj. Filter WCR FT CSP NH 

CN2/CNOP r 
A/B 

-0.12 0.02 
-0.18 

-0.18 
C/D -0.16 

ESCO u 
A/B 

0.49 
0.77 0.86 

0.7 
C/D 0.98 0.98 

SURLAG r 
A/B 

-0.6 
-0.95 -0.99 

-0.99 
C/D -0.7 -0.83 

SOL_BD r 
A/B 

-0.16 
– 0.16 

– 
C/D 0.15 – 

SOL_Z r 
A/B 

0.20 – 
-0.20 

– 
C/D – 

SOL_K r 
A/B 

0.20 
0.1 

– – 
C/D 0.16 

SOL_AWC r – -0.40 – – – 

ALPHA_BF r 
A/B 

-0.96 
-0.77 5.4 

-0.85 
C/D 3.3 2.2 

GW_DELAY u 
A/B 

270 
4.5 170 

450 
C/D 1 2.4 

GWQMN u 
A/B 

0 
0 630 

0 
C/D – 1100 

GW_REVAP u 
Deciduous forest 

0.04 
– – 0.2 

All else 0.02 

REVAPMN u – 210 – – 0 

PND_EVOL r – – 0.8 – – 

PND_FR r – – 0.5 – -0. 5 

FILTERW u 
Agriculture, A/B 

4 
5 12 

14 
Agriculture, C/D 14 – 

CH_N1 u 
A/B 0.03 0.03 

0.03 0.03 
C/D – 0.07 

CH_N2 u 
A/B 0.03 0.03 0.03 

0.03 
C/D – 0.07 0.05 

CH_COV1 u 
A/B – 0.04 0.07 

0.005 
C/D – – 0.05 

CH_COV2 u 
A/B 

– 
0.2 

0.2 0.2 
C/D – 
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Table 16 General performance ratings for a monthly time step (from Moriasi et al., 2007) 

Performance 
Rating 

RSR NSE 
PBIAS (%) 

Streamflow Sediment N, P 

Very good 0.00 ≤ RSR ≤ 0.50 0.75 < NSE ≤ 1.00 PBIAS < ±10 PBIAS < ±15 PBIAS < ±25 

Good 0.50 < RSR ≤ 0.60 0.65 < NSE ≤ 0.75 ±10 ≤ PBIAS < ±15 ±15 ≤ PBIAS < ±30 ±25 ≤ PBIAS < ±40 

Satisfactory 0.60 < RSR ≤ 0.70 0.50 < NSE ≤ 0.65 ±15 ≤ PBIAS < ±25 ±30 ≤ PBIAS < ±55 ±40 ≤ PBIAS < ±70 

Unsatisfactory RSR > 0.70 NSE ≤ 0.50 PBIAS ≥ ±25 PBIAS ≥ ±55 PBIAS ≥ 70 
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Table 17 Monthly summary statistics [n=sample size, PBIAS=percent bias (Equation 11), NSE=Nash-Sutcliffe efficiency (Equation 12)] of model fit for 
streamflow, total suspended solids (TSS) and total phosphorus (TP) shown for each of the calibration (cal) and validation (val) sets. A positive PBIAS is an 
indication of over-prediction and a negative PBIAS is indicative of under-prediction. 

Station Name 

streamflow TSS TP 

n PBIAS NSE n PBIAS NSE n PBIAS NSE 

cal val cal val cal val cal val cal val cal val cal val cal val cal val 

Baraboo River at Main Street, Reedsburg, WI 24 – 15.3 – 0.73 – 24 – 7.6 – 0.60 – 24 – 24.6 – -0.02 – 

Baraboo River near Baraboo, WI 108 36 -2.1 -6.8 0.83 0.90 108 12 -32.0 -25.8 0.81 0.83 120 12 -1.7 -8.5 0.79 0.79 

Big Eau Pleine River at Stratford, WI 108 36 6.5 2.8 0.81 0.73 – – – – – – 84 12 21.5 -1.1 0.51 0.91 

Big Rib River at Rib Falls, WI 36 15 0.8 -11.7 0.87 0.83 – – – – – – 24 12 5.6 19.0 0.78 0.87 

Big Roche a Cri Creek at Hwy 21 32 12 17.3 11.8 0.63 0.71 24 12 75.8 31.5 -0.33 0.58 24 12 12.6 49.2 0.64 -0.58 

Eau Claire River at Kelly, WI 108 36 17.8 32.0 0.68 0.59 24 12 -65.3 -66.7 0.04 0.10 36 12 43.7 -1.8 0.85 0.81 

Fenwood Creek at Bradley, WI 36 15 21.1 105.9 0.67 0.04 – – – – – – 36 12 24.4 420.0 0.38 -8.35 

Freeman Creek at Halder, WI 36 15 12.7 8.9 0.64 0.85 – – – – – – 36 12 -18.5 -51.3 0.74 0.35 

Lemonweir at New Lisbon 32 12 -0.8 -3.9 0.88 0.85 24 12 34.9 96.6 -2.29 -3.58 24 12 -3.9 -8.3 0.57 0.62 

Link Creek 22 – 19.0 – -0.51 – – – – – – – 25 – -30.2 – -0.43 – 

Little Eau Pleine River near Rozellville, WI 33 12 -9.7 29.9 0.71 0.52 36 – -9.5 – 0.52 – 24 12 19.5 3.1 0.66 0.87 

Mill Creek at County Hwy PP 33 12 1.8 8.2 0.88 0.64 36 – 30.1 – 0.58 – 36 – 39.1 – 0.74 – 

Muskellunge Creek, Muskellunge Lake Outlet 23 – 47.4 – -4.12 – – – – – – – 25 – -74.0 – -2.51 – 

Pine River at Center Avenue near Merrill, WI 33 12 2.2 12.8 0.77 0.61 – – – – – – 36 – 42.0 – 0.75 – 

Plover River at Hwy 10/66 33 12 -20.1 -21.5 0.57 0.54 24 12 -33.0 -40.1 0.39 -0.04 24 12 0.1 -12.7 0.72 0.72 

Prairie River near Merrill, WI 108 36 -16.3 -16.5 0.81 0.81 36 12 41.7 36.8 0.71 0.78 36 12 -30.9 -35.4 0.72 0.63 

Spirit River at Spirit  Falls 108 36 3.7 4.6 0.87 0.79 – – – – – – 24 – -33.2 – 0.66 – 

Ten Mile Creek near Nekoosa 108 36 -0.9 2.8 0.80 0.56 36 12 -38.0 -18.0 0.44 0.49 36 12 9.4 2.0 0.59 -1.01 

West Branch of Baraboo River at Hillsboro, WI 108 36 12.7 23.4 0.72 0.49 – – – – – – – – – – – – 

Wisconsin River at Castle Rock Dam 108 36 7.6 6.0 0.79 -0.29 – – – – – – – – – – – – 

Wisconsin River at Lake DuBay Dam 108 36 6.1 3.2 0.86 0.90 – – – – – – 48 12 11.0 -5.6 0.65 0.89 

Wisconsin River at Merrill, WI 144 – -8.9 – 0.73 – 132 – 6.8 – 0.32 – 120 – -13.3 – 0.66 – 

Wisconsin River at Nekoosa Dam 108 36 -2.9 -4.0 0.86 0.87 – – – – – – 48 12 10.6 -8.2 0.76 0.62 

Wisconsin River at Petenwell Dam 108 36 6.3 16.5 0.81 -0.37 – – – – – – – – – – – – 

Wisconsin River at Rothschild, WI 108 36 -6.6 -7.4 0.88 0.82 – – – – – – 24 12 11.6 -1.1 0.81 0.85 

Wisconsin River at Stevens Point Dam 108 36 -7.7 -0.5 0.88 0.79 – – – – – – 48 12 3.3 56.0 0.74 -0.93 

Wisconsin River at Wisconsin Rapids 108 36 -3.9 1.3 0.85 0.91 – – – – – – – – – – – – 

Yellow River at Babcock 108 36 6.8 -3.4 0.86 0.75 24 – -7.5 – 0.61 – 24 – -5.7 – 0.66 – 

Yellow River at Hwy 21 36 8 0.5 1.0 0.87 0.66 24 12 16.5 16.5 0.65 0.02 36 – 13.6 – 0.65 – 
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Table 18 Sample sizes (n), degrees of freedom (df), and fitted parameter values of optimized models (see Equation 13 and 
Equation 14 for the usage of parameters a–f) used to correct biases and simulate routing for streamflow, total suspended 
solids (TSS), and total phosphorus (TP).  

 

Station Name Variable n df a b c d e f 

Baraboo River near 
Baraboo, WI 

streamflow 144 142 2.6 -2.6 – – – – 
TSS 120 114 0.5 -0.7 0.6 -0.4 12.1 1.6 
TP 132 126 0.1 -0.9 1.1 0.1 12.1 3.9 

Big Eau Pleine River at 
Stratford, WI 

streamflow 144 142 3.0 -3.1 – – – – 
TSS 95 89 3.2 -3.4 1.5 -1.4 11.6 1.6 
TP 88 82 2.7 -3.5 1.5 0.9 12.9 0.2 

Big Rib River at Rib Falls, 
WI 

streamflow 51 49 2.6 -2.6 – – – – 
TSS 36 30 1.8 -2.8 2.1 1.2 12.4 -0.7 
TP 36 30 2.4 -2.5 0.8 0.3 11.7 -0.4 

Big Roche a Cri Creek at 
Hwy 21 

streamflow 44 42 5.4 -5.6 – – – – 
TSS 36 30 -0.1 -0.3 1.8 0.8 12.6 -0.1 
TP 36 30 0.7 -0.6 0.3 0.1 9.2 -1.0 

Eau Claire River at Kelly, 
WI 

streamflow 144 142 2.7 -3.0 – – – – 
TSS 27 21 4.3 -2.6 0.7 -0.6 21.0 4.7 
TP 48 42 2.9 -4.6 3.5 2.0 9.1 -0.9 

Fenwood Creek at 
Bradley, WI 

streamflow 51 49 5.8 -6.1 – – – – 
TSS 48 42 3.8 -3.8 0.6 -0.5 13.4 3.1 
TP 48 42 2.7 -4.2 2.8 0.6 13.9 0.1 

Freeman Creek at Halder, 
WI 

streamflow 51 49 6.5 -6.7 – – – – 
TSS 48 42 1.0 -1.0 2.4 -1.3 10.3 2.2 
TP 48 42 2.1 -3.2 4.0 -1.3 9.5 -4.1 

Lemonweir at New Lisbon 
streamflow 44 42 10.8 -10.8 – – – – 

TSS 36 30 -0.6 -0.4 0.7 0.5 12.5 0.7 
TP 36 30 -0.4 -0.9 1.9 0.8 10.4 0.3 

Little Eau Pleine River 
near Rozellville, WI 

streamflow 43 41 3.4 -3.4 – – – – 
TSS 25 19 0.8 -1.5 0.8 0.7 11.2 -0.7 
TP 34 28 0.2 -1.3 1.7 0.6 12.6 0.0 

Pine River at Center 
Avenue near Merrill, WI 

streamflow 45 43 4.8 -4.9 – – – – 
TSS 36 30 0.3 -1.4 2.2 1.8 11.1 0.1 
TP 36 30 4.0 -5.1 1.8 1.2 9.6 -0.7 

Plover River at Hwy 10/66 
streamflow 45 43 0.9 -1.1 – – – – 

TSS 36 30 0.5 -0.3 2.9 -2.3 11.1 1.9 
TP 36 30 -0.5 -0.5 1.0 -0.3 10.1 2.0 

Ten Mile Creek near 
Nekoosa 

streamflow 144 142 1.2 -1.5 – – – – 
TSS 48 42 0.8 -0.5 1.9 1.3 10.5 -1.0 
TP 48 42 -0.2 -0.9 1.6 0.2 10.7 1.5 

Wisconsin River at 
Merrill, WI 

streamflow 144 142 0.4 -0.9 – – – – 
TSS 132 126 0.0 -0.3 1.0 0.2 13.5 -0.4 
TP 132 126 -0.2 -0.6 1.5 0.8 12.5 0.6 

Yellow River at Babcock 
streamflow 143 141 8.8 -8.9 – – – – 

TSS 19 13 4.7 -3.5 0.7 0.6 13.1 1.1 
TP 22 16 3.7 -3.9 1.3 0.8 18.2 1.5 
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Table 19 Final fit statistics of streamflow, total suspended solids (TSS), and total phosphorus (TP) of SWAT model after 
bias-correction and adjusting for routing. 

Station Name Fit? 
Streamflow TSS TP 

n NSE PBIAS n NSE PBIAS n NSE PBIAS 

Baraboo River at Main Street, Reedsburg, WI N 144 0.80 0.0 24 -0.16 66.8 24 0.58 24.7 

Baraboo River near Baraboo, WI Y 144 0.86 0.0 120 0.81 0.0 132 0.89 0.0 

Big Eau Pleine River at Stratford, WI Y 144 0.77 0.0 – – – 96 0.45 0.2 

Big Rib River at Rib Falls, WI Y 51 0.82 0.0 – – – 36 0.79 0.0 

Big Roche a Cri Creek at Hwy 21 Y 44 0.79 0.0 36 0.15 0.4 36 0.80 0.0 

Eau Claire River at Kelly, WI Y 144 0.70 0.0 36 0.80 9.5 48 0.85 0.0 

Fenwood Creek at Bradley, WI Y 51 0.65 0.0 – – – 48 0.36 0.0 

Freeman Creek at Halder, WI Y 51 0.71 0.0 – – – 48 0.69 0.0 

Lemonweir at New Lisbon Y 44 0.88 0.0 36 0.78 0.0 36 0.76 0.0 

Little Eau Pleine River near Rozellville, WI Y 45 0.71 0.7 36 0.47 4.8 36 0.80 0.5 

Mill Creek at County Hwy PP N 45 0.78 10.0 36 0.52 66.5 36 0.79 30.4 

Pine River at Center Avenue near Merrill, WI Y 45 0.75 0.0 – – – 36 0.82 0.0 

Plover River at Hwy 10/66 Y 45 0.65 0.0 36 0.87 0.0 36 0.90 -0.4 

Prairie River near Merrill, WI N 144 0.63 -9.5 48 0.34 -40.4 48 0.69 -16.6 

Spirit River at Spirit  Falls N 144 0.64 10.4 – – – 24 0.41 -25.7 

Ten Mile Creek near Nekoosa Y 144 0.85 0.0 48 0.69 0.0 48 0.92 0.0 

West Branch of Baraboo River at Hillsboro, WI N 144 0.70 17.3 – – – – – – 

Wisconsin River at Castle Rock Dam N 144 0.69 17.2 – – – – – – 

Wisconsin River at Lake DuBay Dam N 144 0.77 14.5 – – – 60 0.41 14.9* 

Wisconsin River at Merrill, WI Y 144 0.70 0.0 132 0.76 0.2 132 0.70 0.0 

Wisconsin River at Nekoosa Dam N 144 0.78 8.0 – – – 60 0.54 12.1* 

Wisconsin River at Petenwell Dam N 144 0.68 19.9 – – – – – – 

Wisconsin River at Rothschild, WI N 144 0.78 -1.1 – – – 36 0.81 5.6 

Wisconsin River at Stevens Point Dam N 144 0.79 2.4 – – – 60 0.35 18.8* 

Wisconsin River at Wisconsin Dells N 144 0.78 6.6 – – – – – – 

Wisconsin River at Wisconsin Rapids N 144 0.77 7.0 – – – – – – 

Wisconsin River below Prairie du Sac Dam N 69 0.85 -0.2 – – – – – – 

Yellow River at Babcock Y 144 0.81 0.9 24 0.59 5.6 24 0.64 0.4 

Yellow River at Hwy 21 * 44 0.83 0.0 36 0.1 -1.3 36 0.56 -2.0 

*Accuracy measures are reported here as a benchmark, but are not valid due to the exclusion of explicit reservoir settling processes, and are 
therefore consistently over-predicted (See Sections 5.4 and 5.13) 
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Table 20 Average annual (2010-13) discharge, total phosphorus (TP) load, and estimated TP delivery fractions for 
mainstem Wisconsin River monitoring stations. 

Station Name 
Drainage 

Area (km2) 

TP 
Delivery 
Fraction 

Measured 
Discharge 

(cfs) 

Sum of 
Tributary 
Discharge 

(cfs) 

Measured TP 
Load (mt) 

Sum of 
Tributary TP 

Load (mt) 

Sum of 
Tributary TP 

Load with 
Delivery 

(kg) 

Merrill 7148 - 2205 - 125 125 125 
Wausau 7925 1 2159 2460 129 148 148 
Rothschild 10412 0.945 3281 3277 225 238 225 
DuBay 12691 0.88 3758 4182 314 365 310 
Stevens Point 12924 1 4122 4254 317 372 317 
Wisconsin 
Rapids 

13934 1 4416 4637 344 423 368 

Nekoosa 14672 1 4661 4941 431 469 414 
Petenwell 15462 0.815 4606 5215 330 481 347 
Castle Rock 18285 0.913 5469 6116 352 538 369 
Wisconsin 
Dells 

20720 1 6726 6972 454 622 454 

Prairie du Sac 23776 1 8512 7985 616 753 584 
Muscoda 26936 - 8959 - - - - 
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Table 21 Relative contributions of total suspended solids (TSS) and total phosphorus (TP) by source type. Loads are 
expressed as the average total mass exported across the whole study area. The areal footprint of point sources is 
irrelevant, and therefore their areas and yields are not reported. 

Source 
Area 

TSS TP 

Load Percent Yield Load Percent Yield 

km2 (%) (Mg) (%) (Mg/ha) (kg) (%) (kg/ha) 

Natural 17,010 74.7 15,638 17.4 0.01 134,540 18.2 0.08 

Agriculture 4,355 19.1 52,122 58.1 0.12 391,527 52.9 0.90 

 Cash Grain  1,230  5.4  11,339  12.6  0.09  54,553  7.4  0.44 

  Dairy  2,381  10.5  37,807  42.2  0.16  325,045  43.9  1.37 

  Potato/Vegetable  745  3.3  2,976  3.3  0.04  11,929  1.6  0.16 

MS4 277 1.2 5,490 6.1 0.20 21,311 2.9 0.77 

Developed 1,140 5.0 11,954 13.3 0.10 44,248 7.6 0.49 

Point Source – – 4,492 5.0 – 137,020 18.5 – 

Total 22,782 100.0 89,696 100.0 0.04 740,344 100.0 0.32 
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11 Figures 
 

 

Figure 1 Upper Wisconsin River SWAT model area with large municipal separate stormwater systems (MS4s with 
populations greater than 5,000) and major tributary watersheds labeled. 
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Figure 2 Map of all 337 SWAT subbasin delineations. The gray areas denoted by black polygons, were not modeled in 
SWAT, and therefore their areas were “cut out” of the subbasin delineation where they overlaid. 

 

  



 

81 
 

 

 

Figure 3 WDNR Approach for defining crop rotations and land management for the WRB SWAT model. Crop classifications 
were generalized to the majority within a Public Land Survey System (PLSS), 160-acre (65-hectare) ¼-section. A majority 
crop sequence was then constructed for each ¼ section. A custom algorithm was built to translate each crop sequence to a 
generalized agricultural rotation type. 
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Figure 4 Our initial assessment of typical crop rotations were often too explicit or simply did not exist in reality. After 
meeting with local experts, our rotations were generalized into 5 major classes, shown in the “Post-Local Knowledge” 
table. 

 

  



 

83 
 

 

Raster Layers

Map of CDL-based crop 
rotation types (Fine 
spatial scale, but no 

temporal information)

Map of dominant 
rotation types by ¼ 

section (coarse spatial 
scale, fine temporal 

scale)

Run ArcToolbox Expand Tool for 
dairy, cash grain, and potato rotation 

types

Dairy

Cash grain

Potato/
vegetable

Spatial Union

Spatial Union

Spatial Union

No

No

Cropland Data Layers, 
2008-2012

Identify crop rotation types

Dairy 
management

Cash grain 
management

Potato/
vegetable 

management

Stagger rotations randomly into 3 
sequences

Merge management rasters

Land cover and 
land 

management 
raster layer

Generalize pixel-scale rotation types 
to Common Land Unit (CLU)

 

Figure 5 Process of merging local knowledge with Cropland Data Layer (CDL) defined rotations 
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Figure 6 Final landcover map used for configuration of SWAT model. Dairy, Cash Grain, and Potato/Vegetable rotations 
refer to landcovers delineating in the process described in Section 3.2.2. 
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Figure 7 Maps showing an example of a qualitative comparison of pixel-based Cropland Data Layer (CDL) crop rotations to 
transect point crop rotations. The same algorithm was used to generalize a crop rotation from a 5-year sequence for both 
the CDL and transect data. 
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Figure 8 The number of years of corn planted in a typical 6-year dairy crop rotation varied by region. 
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Figure 9 Comparison of corn area (thousands of hectares) of raw Cropland Data Layer (CDL) to our (WDNR) generalized 
version that was ultimately used in the SWAT model. Regardless of county, the WDNR generalized version matches the 
original product well, which validates that the rotational generalization as well as the numbers of corn years used in dairy 
and cash grain rotations match well with reality. 
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Figure 10 Comparison of the locations of dairy production facilities [provided by the Wisconsin Department of 
Agriculture, Trade, and Consumer Protection (DATCP)] to areas defined as dairy rotation from the generalized landcover 
and land management dataset described in Sections 3.2.1 through 3.2.4. The locations of dairy production facilities 
provided by DATCP (a) and their densities (b) align well with density of generalized dairy rotations used in this study (c). 
The locations of non-dairy agricultural production are also shown (d) to illustrate that the pattern of identified dairy 
rotations did not simply follow the pattern of overall agriculture. 
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Figure 11 Comparison of masses of applied manure between the National Agricultural Statistics Service countywide 
estimates and ours (WDNR). Specific methods for calculating manure masses can be found in the balance sheets in 
Appendix D.4. 
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Figure 12 Schematic diagram of SSURGO data structure [taken from Gatzke et al. (2011)].  
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Figure 13 Flow diagram of the soil aggregation process. Horizons are grouped together according to which component 
they belong. Components are grouped together according to which map unit they belong to. A weighted average is 
calculated, based upon the component percentage. Mapunits are grouped together according to hydrologic soil group, and 
they are then assigned to a cluster based on a clustering algorithm. Clusters are created by aggregated map units together 
using a depth-weighted average of soil properties for each horizon. 
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Figure 14 Schematic diagram of SSURGO map unit. Antigo and Houghton are each components within the map unit. Within 
each map unit are varying numbers of components with varying horizon depths (e.g., Ap and O1 are the surface horizons 
for Antigo and Houghton respectively. Components were aggregated to map units by averaging soil properties (e.g., 
percent sand) horizontally across horizons. 
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Figure 15 Hydrologic Soil Group is a good indicator of how downstream hydrology will be impacted by upstream soils. The 
gradient from A to D represents a gradient from well-drained to poorly-drained, respectively. 
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Figure 16 Map of landscape slope classes. Each slope class represents a quintile (e.g., 20% of slopes are between 0 and 
0.5%). These slope classes were used for defining HRUs described in Section 3.5).  
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Figure 17 Locations of municipal and industrial wastewater outfalls.  
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Figure 18 Scatterplots of observed versus predicted lake volumes used to parameterize geometric properties of ponds in 
SWAT. The area/depth model used lake surface area and maximum depth to predict lake volume and the area model used 
only lake surface area to predict its volume. The area/depth model explains 92% of the variability in volumes and the 
area model explains 89% of the variability in volumes. 
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Figure 19 Example image of a filled digital elevation model (DEM) used to estimate maximum storage volume and surface 
area of landlocked lakes for parameterizing geometries of ponds in SWAT. The green to white gradient represents 
elevation from low to high. Blue polygons are landlocked lakes. Black polygons are the extent of grid cells associated with 
the internally draining area that flows to a landlocked lake. Black polygons not intersecting a landlocked lake were not 
used in surface area and volume calculations. The black watershed boundary represents the overall drainage area of each 
pond. 
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Figure 20 Map showing the areas draining to ponds and wetlands in the Wisconsin River Basin SWAT model. 
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Figure 21 Observed verses predicted ALPHA_BF SWAT parameter. Observed ALPHA_BF was calculated for each USGS gage 
site (USGS 2014) by the Baseflow Program (Arnold et al., 1995). 
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Figure 22 Map showing the predicted ALPHA_BF for each SWAT subbasin. Higher (darker) values indicate a slower 
response of groundwater to recharge and lighter values indicate greater baseflow. 
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Figure 23 Map showing the estimated concentration of phosphorus in groundwater in the Wisconsin River Basin. Values 
were obtained from Robertson, Saad, and Heisey (2006) 
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Figure 24 Location of gage sites used in the calibration process. Circle sizes are representative of drainage area size, 
however the sizes are not proportional. 
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Figure 25 Map of Wisconsin Ecological Landscapes (WDNR, 2012) that were used for bounding parameter adjustments in 
the calibration process. Some ecological landscapes were dissolved together to minimize the complexity of the model 
while retaining the most important information. Each hue represents a dissolved ecoregion (e.g., the three blue hues were 
dissolved into the Central Sand Plains). The abbreviations in the legend also represent these dissolved ecoregions and are 
the abbreviations used throughout the text (NH=Northern Highland, FT=Forest Transition, CSP=Central Sand Plains, 
WCR=Western Coulees and Ridges). The Omernik (Omernik, 1987) delineation of the Southeastern Till Plains was used as 
a guide in final calibration adjustments described in Section 5.12. 
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Figure 26 SWAT model calibration workflow for streamflow, sediment, and nutrients (from Engel, Storm, White, Arnold, & 
Arabi, 2007 and Arnold, Moriasi, et al., 2012, adapted from Santhi et al., 2001). 
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Figure 27 Each subbasin was associated with either a downstream or nearby gaging station for the routing and bias 
correction sub-model. 
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Figure 28 Map of annual average total suspended solids (TSS) yields (load normalized by area) for each subbasin in the 
SWAT model. Color classifications are associated with quintiles (i.e., 20% of subbasins yield between 0 and 0.005 
Mg/ha/yr). 
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Figure 29 Map of annual average total phosphorus (TP) yields (load normalized by area) for each subbasin in the SWAT 
model. Color classifications are associated with quintiles (i.e., 20% of subbasins yield between 0.016 and 0.094 kg/ha/yr). 
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Figure 30 Maps of annual average total suspended solids (TSS) yields (load normalized by the area of each source type) 
for each subbasin and non-point source type in the SWAT model. Color classifications are associated with quintiles (i.e., 
20% of subbasin/source combinations yield between 0 and 0.006 Mg/ha/yr). 
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Figure 31 Maps of annual average total phosphorus (TP) yields (load normalized by the area of each source type) for each 
subbasin and non-point source type in the SWAT model. Color classifications are associated with quintiles (i.e., 20% of 
subbasin/source combinations yield between 0.014 and 0.084 kg/ha/yr). 
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Figure 32 Boxplot showing the seasonal variability of total suspended solids yields (TSS) across the project area. Each box 
illustrates variability in yield across the 12 simulation years. For each month, the thick line represents the median 
monthly TSS yield (total load divided by the project area), the boxes represent the interquartile ranges, the whiskers 
represent the range, and the dots represent outliers. 
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Figure 33 Boxplot showing the seasonal variability of total phosphorus (TP) across the project area. Each box illustrates 
variability in yield across the 12 simulation years. For each month, the thick line represents the median monthly TP yield 
(total load divided by the project area), the boxes represent the interquartile ranges, the whiskers represent the overall  
ranges, and the dots represent outliers. 
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Figure 34 Boxplot showing the  variability in total suspended solids (TSS) yield by each agricultural landuse-type 
(D=dairy, CG=corn grain, PV=potato/vegetable, Dev=developed, G=grassland, F=forest, W=wetland) across the entire 
project area. Each box and whisker set represents the variability of annual average TSS yield (HRU-based load divided by 
HRU area) across HRUs. 
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Figure 35 Boxplot showing the variability of total suspended solids (TSS) yield by landuse-type (D=dairy, CG=corn grain, 
PV=potato/vegetable, Dev=developed, G=grassland, F=forest, W=wetland) distributions throughout  the entire project 
area. Each box and whisker set represents the variability of annual average TSS yield (HRU-based load divided by HRU 
area) across HRUs. 
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Figure 36 Boxplot showing the variability of annual average total phosphorus (TP) yield by fertilizer-type (MS=manure 
solid, ML=manure liquid, S=synthetic) across the whole study area. Each box and whisker set represents the variability of 
annual average TP yield (HRU-based load divided by HRU area) across agricultural HRUs. 
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Figure 37 Maps illustrating the simulated annual average percent of in-stream total suspended solids (TSS) loads 
contributed by each source category. The color gradient represents the relative contribution, in percent, not the total 
mass. Background contributions include loads generated by forest, wetland, and grassland landcovers; developed 
includes developed landcover in the SWAT model, plus permitted and non-permitted developed areas simulated in 
WinSLAMM. 
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Figure 38 Maps illustrating the simulated average annual percent of in-stream total phosphorus (TP) loads contributed by 
each source category. The color gradient represents the relative contribution, in percent, not the total mass. Background 
contribution includes the portion of the load generated by forest, wetland, and grassland landcover, and developed 
includes the developed landcover in the SWAT model plus permitted and non-permitted urban areas simulated in 
WinSLAMM,. 
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Figure 39 Plot of mean discharge (2010-13) on the mainstem Wisconsin River between Merrill and Prairie du Sac. The 
sum of tributary flows is based on measured flows where available, and SWAT modeled flows on ungauged tributaries. 
The dashed line is a linear regression of the USGS gage sites only. 
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Figure 40 Mean annual total phosphorus (TP) load (2010-13) vs: drainage area on the mainstem of the Wisconsin River 
between Merrill and Prairie du Sac. The sum of tributary loads is a combination of measured loads where available, and 
SWAT modeled loads on ungauged tributaries. Delivered tributary loads were calculated by applying the delivery 
fractions in Table 20. 
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12 Appendices 

Appendix D.1 
 

Detailed information was collected from local agricultural experts to inform the SWAT model of 
specific land management operations. Below is a list of example questions used in these 
interviews: 

1) What are the approximate planting dates and harvest dates for each crop type identified on the 
map? 

2) Agricultural areas were identified as “insufficient” if we did not have enough data to define a 
certain crop rotation. Identifying these areas, however, is very important for our modeling efforts. 
Are there “insufficient” areas that you can tell us about? Do you know the general crop rotations? 

3) Can we make any inferences about certain crop rotation schemes? (An example might be that 
any continuous corn crop rotation means that they certainly don’t do no-till, etc.) 

4) One of our greatest struggles has been distinguishing between satellite imagery results for 
areas identified as land cover types such as pasture, hay, grassland, etc. Are you able to generally 
identify which areas are grazed, which are harvested, and which are left unutilized? Can you 
distinguish between light pasture (low animal density) and heavy pasture (high animal density)? 

5) Are there crop rotations that you know of in your county that aren’t represented on the map? 

6) Are there areas where farmers are growing multiple crops per season? Additionally, are cover 
crops a common practice in your county? If so, can cover crops be correlated with a certain crop 
type or crop rotation? 

7) The satellite imagery can only distinguish between corn and sweet corn. It can’t identify seed 
corn vs. feed corn vs. corn for ethanol or grain products. More importantly, it can’t provide 
information about what corn is silage and what isn’t. Are there any general assumptions that can 
be made about grain rotations and their likelihood of being used for silage? 

8) In (insert county name), are there general relationships between the crop rotation type and the 
tillage practices? Or, are there relationships between the general geographic location and the 
tillage practices (in example, the southwest portion of the county may cultivate more often than 
the northeast)? 

9) Can tillage practices be correlated with things other than rotation? For instance, are there soil 
type limitations that create tillage differences across the county? 

10) What are the approximate tillage dates for the different crop rotations? 

11) What are the predominant tillage patterns, in terms of timing and type of tillage? 
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12) Are tillage practices generally predictable, or do they vary year-to-year (based on market 
pressures, environmental conditions, etc.)? 

13) Is there a relationship between crop rotation type and nutrient application? 

14) For each rotation, can you provide an estimate as to how much is applied, how often it is 
applied, and what type is applied? 

15) What rotations receive chemical fertilizer? 

16) What are the most common N:P:K ratios in your county for chemical fertilizers? 

17) Are there any “hotspots” that require further investigation? 

18) Are there any areas pertinent to nutrient runoff that you can identify? These might be 
landscape factors such as areas of major erosion, water diversion systems, soil conservation 
efforts, etc. 

19) Are there areas where you can identify tile drainage? 

20) Is tile drainage field specific or is it a function of slope, soil type, or some other land 
characteristic? 

21) Are there any other concerns you think should be considered when assessing phosphorus and 
sediment contributions from your county as part of the Wisconsin River Basin TMDL? 

 

  



 

121 
 

Appendix D.2 
 

Generic crop rotation operations used in SWAT model. The labeled number is simply a code that 
identifies each crop rotation—these codes will be useful for interpreting the maps provided in 
Appendix D.3. Crops are abbreviated as Cg (corn grain), Cs (corn silage), A (alfalfa), So (soybeans), 
Po (potatoes), and Vg (rotated sweet corn and snap beans).  
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300 - Cg-Cs-O/A-A-A-A (LQ) Spring Chisel -10,000 ga/acre/yr 

       
Year Month Day Operation Type Amount Unit 

1 4 29 Manure Dry Weight 5,582 kg/ha 
1 5 1 Tillage Chisel Plow   
1 5 15 Plant Corn Grain   
1 5 15 Fertilizer 20:10:18 168 kg/ha 

1 11 1 Harvest Corn Grain   
2 4 29 Manure Dry Weight 5,582 kg/ha 
2 5 1 Tillage Chisel Plow   
2 5 15 Plant Corn Silage   
2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 9 15 Harvest Corn Silage   
3 4 14 Manure Dry Weight 1,675 kg/ha 
3 4 17 Tillage Chisel Plow   
3 4 25 Plant Alfalfa   
3 8 10 Harvest Alfalfa   
4 6 1 Harvest Alfalfa   
4 7 15 Harvest Alfalfa   
4 8 30 Harvest Alfalfa   
5 6 1 Harvest Alfalfa   
5 7 15 Harvest Alfalfa   
5 8 30 Harvest Alfalfa   
6 6 1 Harvest Alfalfa   
6 7 15 Harvest Alfalfa   
6 8 30 Harvest Alfalfa   
6 10 15 Tillage Chisel Plow   
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301 - Cg-Cs-O/A-A-A-A (DH) Spring Chisel - 25 tons/acre/year 

       
Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Manure 3362.5 kg/ha 
1 2 28 Manure Dry Manure 3362.5 kg/ha 
1 3 31 Manure Dry Manure 3362.5 kg/ha 
1 4 29 Manure Dry Manure 3362.5 kg/ha 
1 5 1 Tillage Chisel Plow    
1 5 15 Plant Corn Grain    

1 5 15 Fertilizer 20:10:18 168.0 kg/ha 
1 11 1 Harvest Corn Grain    
2 1 31 Manure Dry Manure 3362.5 kg/ha 
2 2 28 Manure Dry Manure 3362.5 kg/ha 
2 3 31 Manure Dry Manure 3362.5 kg/ha 
2 4 29 Manure Dry Manure 3362.5 kg/ha 
2 5 1 Tillage Chisel Plow    
2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168.0 kg/ha 

2 9 15 Harvest Corn Silage    
3 1 31 Manure Dry Manure 1120.8 kg/ha 
3 2 28 Manure Dry Manure 1120.8 kg/ha 
3 3 31 Manure Dry Manure 1120.8 kg/ha 
3 4 14 Manure Dry Manure 1120.8 kg/ha 
3 4 17 Tillage Chisel Plow    
3 4 25 Plant  Alfalfa    
3 8 10 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    

4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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302 - Cg-O/A-A-A-A-A (DH) Spring Chisel - 25 
tons/acre/year 

       

Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Weight 3362.5 kg/ha 

1 2 28 Manure Dry Weight 3362.5 kg/ha 

1 3 31 Manure Dry Weight 3362.5 kg/ha 

1 4 29 Manure Dry Weight 3362.5 kg/ha 

1 5 1 Tillage Chisel Plow    
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
2 1 31 Manure Dry Weight 1,121 kg/ha 
2 2 28 Manure Dry Weight 1,121 kg/ha 
2 3 31 Manure Dry Weight 1,121 kg/ha 
2 4 14 Manure Dry Weight 1,121 kg/ha 
2 4 17 Tillage Chisel Plow    

2 4 25 Plant  Alfalfa    
2 8 10 Harvest Alfalfa    
3 6 1 Harvest Alfalfa    
3 7 15 Harvest Alfalfa    
3 8 30 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    

5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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303 - Cg-Cs-O/A-A-A-A (LQ) Fall Chisel -10,000 ga/acre/yr 

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 12 Manure Liquid 5,582 kg/ha 
1 11 15 Tillage Chisel Plow    

2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 15 Manure Liquid 5,582 kg/ha 
2 10 18 Tillage Chisel Plow    
3 4 14 Manure Liquid 1675 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    

3 8 10 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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304 - Cg-Cs-O/A-A-A-A (DH) Fall Chisel - 25 tons/acre/year 

       
Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Weight 3362.5 kg/ha 
1 2 28 Manure Dry Weight 3362.5 kg/ha 
1 3 31 Manure Dry Weight 3362.5 kg/ha 
1 4 29 Manure Dry Weight 3362.5 kg/ha 
1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Grain    

1 5 15 Fertilizer 20:10:18 168.0 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 15 Tillage Chisel Plow    
2 1 31 Manure Dry Weight 3362.5 kg/ha 
2 2 28 Manure Dry Weight 3362.5 kg/ha 
2 3 31 Manure Dry Weight 3362.5 kg/ha 
2 4 29 Manure Dry Weight 3362.5 kg/ha 
2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    

2 5 15 Fertilizer 20:10:18 150.0 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 1 Tillage Chisel Plow    
3 1 31 Manure Dry Weight 1120.8 kg/ha 
3 2 28 Manure Dry Weight 1120.8 kg/ha 
3 3 31 Manure Dry Weight 1120.8 kg/ha 
3 4 14 Manure Dry Weight 1120.8 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    
3 8 10 Harvest Alfalfa    

4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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305- Cs-Cs-O/A-A-A-A (LQ) Fall Chisel -10,000 ga/acre/yr 

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Silage    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 9 15 Harvest Corn Silage    
1 10 15 Manure Liquid 5,582 kg/ha 
1 10 18 Tillage Chisel Plow    

2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 15 Manure Liquid 5582 kg/ha 
2 10 18 Tillage Chisel Plow    
3 4 14 Manure Liquid 1,675 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    

3 8 10 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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306 - Cs-Cs-O/A-A-A-A (DH) Fall Chisel - 25 tons/acre/year 

       
Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Weight 3362.5 kg/ha 
1 2 28 Manure Dry Weight 3362.5 kg/ha 
1 3 31 Manure Dry Weight 3362.5 kg/ha 
1 4 29 Manure Dry Weight 3362.5 kg/ha 
1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Silage    

1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 9 15 Harvest Corn Silage    
1 10 1 Tillage Chisel Plow    
2 1 31 Manure Dry Weight 3362.5 kg/ha 
2 2 28 Manure Dry Weight 3362.5 kg/ha 
2 3 31 Manure Dry Weight 3362.5 kg/ha 
2 4 29 Manure Dry Weight 3362.5 kg/ha 
2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    

2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 1 Tillage Chisel Plow    
3 1 31 Manure Dry Manure 1120.8 kg/ha 
3 2 28 Manure Dry Manure 1120.8 kg/ha 
3 3 31 Manure Dry Manure 1120.8 kg/ha 
3 4 14 Manure Dry Manure 1120.8 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    
3 8 10 Harvest Alfalfa    

4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    
6 8 30 Harvest Alfalfa    

6 10 15 Tillage Chisel Plow     
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307 - Cs-Cs-O/A-A-A-A (LQ) Fall MB Plow -10,000 
ga/acre/yr 

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Silage    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 9 15 Harvest Corn Silage    
1 10 15 Manure Liquid 5,582 kg/ha 

1 10 18 Tillage MB Plow    
2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168 kg/ha 

2 9 15 Harvest Corn Silage    
2 10 15 Manure Liquid 5,582 kg/ha 
2 10 18 Tillage MB Plow    
3 4 14 Manure Liquid 1,675 kg/ha 
3 4 17 Tillage Cultivation    

3 4 25 Plant  Alfalfa    
3 8 10 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    

6 8 30 Harvest Alfalfa    

6 10 15 Tillage MB Plow     
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308 - Cs-Cs-O/A-A-A-A (DH) Fall MB Plow - 25 
tons/acre/year 

       
Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Weight 3362.5 kg/ha 
1 2 28 Manure Dry Weight 3,363 kg/ha 
1 3 31 Manure Dry Weight 3,363 kg/ha 
1 4 29 Manure Dry Weight 3,363 kg/ha 
1 5 1 Tillage Cultivation    

1 5 15 Plant Corn Silage    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 9 15 Harvest Corn Silage    
1 10 1 Tillage MB Plow    
2 1 31 Manure Dry Weight 3,363 kg/ha 
2 2 28 Manure Dry Weight 3362.5 kg/ha 
2 3 31 Manure Dry Weight 3362.5 kg/ha 
2 4 29 Manure Dry Weight 3362.5 kg/ha 
2 5 1 Tillage Cultivation    

2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 150 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 1 Tillage MB Plow    
3 1 31 Manure Dry Manure 1120.8 kg/ha 
3 2 28 Manure Dry Manure 1120.8 kg/ha 
3 3 31 Manure Dry Manure 1120.8 kg/ha 
3 4 14 Manure Dry Manure 1120.8 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    

3 8 10 Harvest Alfalfa    

4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    

6 8 30 Harvest Alfalfa    

6 10 15 Tillage MB Plow     
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309 - Cg-Cs-O/A-A-A-A (LQ) Fall MB Plow -10,000 
ga/acre/yr 

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Cultivation    
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 1675 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 12 Manure Liquid 5,582 kg/ha 

1 11 15 Tillage MB Plow    
2 5 1 Tillage Cultivation    
2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168 kg/ha 

2 9 15 Harvest Corn Silage    
2 10 15 Manure Liquid 5,582 kg/ha 
2 10 18 Tillage MB Plow    
3 4 14 Manure Liquid 1,675 kg/ha 
3 4 17 Tillage Cultivation    

3 4 25 Plant  Alfalfa    
3 8 10 Harvest Alfalfa    
4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    

6 8 30 Harvest Alfalfa    

6 10 15 Tillage MB Plow     
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310 - Cg-Cs-O/A-A-A-A (DH) Fall MB Plow - 25 
tons/acre/year 

       
Year Month Day Operation  Type Amount Unit 

1 1 31 Manure Dry Weight 3362.5 kg/ha 
1 2 28 Manure Dry Weight 3,363 kg/ha 
1 3 31 Manure Dry Weight 3,363 kg/ha 
1 4 29 Manure Dry Weight 3,363 kg/ha 
1 5 1 Tillage Cultivation    

1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 15 Tillage MB Plow    
2 1 31 Manure Dry Weight 3362.5 kg/ha 
2 2 28 Manure Dry Weight 3,363 kg/ha 
2 3 31 Manure Dry Weight 3,363 kg/ha 
2 4 29 Manure Dry Weight 3,363 kg/ha 
2 5 1 Tillage Cultivation    

2 5 15 Plant Corn Silage    
2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 9 15 Harvest Corn Silage    
2 10 1 Tillage MB Plow    
3 1 31 Manure Dry Manure 1120.8 kg/ha 
3 2 28 Manure Dry Manure 1120.8 kg/ha 
3 3 31 Manure Dry Manure 1120.8 kg/ha 
3 4 14 Manure Dry Manure 1120.8 kg/ha 
3 4 17 Tillage Cultivation    
3 4 25 Plant  Alfalfa    

3 8 10 Harvest Alfalfa    

4 6 1 Harvest Alfalfa    
4 7 15 Harvest Alfalfa    
4 8 30 Harvest Alfalfa    
5 6 1 Harvest Alfalfa    
5 7 15 Harvest Alfalfa    
5 8 30 Harvest Alfalfa    
6 6 1 Harvest Alfalfa    
6 7 15 Harvest Alfalfa    

6 8 30 Harvest Alfalfa    

6 10 15 Tillage MB Plow     
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400 - Cg-Cg-So-Cg-Cg-So (Fall Chisel/Spring Disk)  

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Disk Plow    
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 20 Tillage Chisel Plow    
2 5 1 Tillage Disk Plow    

2 5 15 Plant Corn Grain    
2 5 15 Fertilizer 20:10:18 168 kg/ha 
2 11 1 Harvest Corn Grain    
2 11 20 Tillage Chisel Plow    
3 5 1 Tillage Disk Plow    
3 5 30 Plant Soybean    
3 10 25 Harvest Soybean    
3 11 1 Tillage Chisel Plow    
4 5 1 Tillage Disk Plow    

4 5 15 Plant Corn Grain    
4 5 15 Fertilizer 20:10:18 168 kg/ha 
4 11 1 Harvest Corn Grain    
4 11 20 Tillage Chisel Plow    
5 5 1 Tillage Disk Plow    
5 5 15 Plant Corn Grain    
5 5 15 Fertilizer 20:10:18 168 kg/ha 
5 11 1 Harvest Corn Grain    
5 11 20 Tillage Chisel Plow    
6 5 1 Tillage Disk Plow    

6 5 30 Plant Soybean    
6 10 25 Harvest Soybean    

6 11 1 Tillage Chisel Plow     
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401 - Cg-So-Cg-So-Cg-So (Fall Chisel/Spring Disk)  

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Disk Plow     
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
1 11 20 Tillage Chisel Plow    
2 5 1 Tillage Disk Plow    

2 5 30 Plant Soybean    
2 10 25 Harvest Soybean    
2 11 1 Tillage Chisel Plow    
3 5 1 Tillage Disk Plow    
3 5 15 Plant Corn Grain    
3 5 15 Fertilizer 20:10:18 168 kg/ha 
3 11 1 Harvest Corn Grain    
3 11 20 Tillage Chisel Plow    
4 5 1 Tillage Disk Plow    

4 5 30 Plant Soybean    
4 10 25 Harvest Soybean    
4 11 1 Tillage Chisel Plow    
5 5 1 Tillage Disk Plow    
5 5 15 Plant Corn Grain    
5 5 15 Fertilizer 20:10:18 168 kg/ha 
5 11 1 Harvest Corn Grain    
5 11 20 Tillage Chisel Plow    
6 5 1 Tillage Disk Plow    
6 5 30 Plant Soybean    

6 10 25 Harvest Soybean    

6 11 1 Tillage Chisel Plow     
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402 - Cg-So-Cg-So-Cg-So (No Till All Years)  

       
Year Month Day Operation  Type Amount Unit 

1 5 1 Tillage Cultivation     
1 5 15 Plant Corn Grain    
1 5 15 Fertilizer 20:10:18 168 kg/ha 
1 11 1 Harvest Corn Grain    
2 5 1 Tillage Cultivation    
2 5 30 Plant Soybean    

2 10 25 Harvest Soybean    
3 5 15 Plant Corn Grain    
3 5 15 Fertilizer 20:10:18 168 kg/ha 
3 11 1 Harvest Corn Grain    
4 5 1 Tillage Cultivation    
4 5 30 Plant Soybean    
4 10 25 Harvest Soybean    
5 5 15 Plant Corn Grain    
5 5 15 Fertilizer 20:10:18 168 kg/ha 

5 11 1 Harvest Corn Grain    
6 5 1 Tillage Cultivation    
6 5 30 Plant Soybean    

6 10 25 Harvest Soybean     
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500 - Po-Vg-Vg-Po-Vg-Vg   

       
Year Month Day Operation  Type Amount Unit 

1 4 30 Tillage MB Plow    
1 4 30 Plant Potato    
1 4 30 Fertilizer 20:10:18 280 kg/ha 
1 6 1 Tillage Mounding    
1 6 15 Fertilizer 18:46:00 112 kg/ha 
1 8 20 Harvest Potato    

2 5 15 Tillage Cultivator    
2 5 20 Plant Snap Beans    
2 5 20 Fertilizer 20:10:18 168 kg/ha 
2 7 15 Harvest Snap Beans    
3 5 15 Tillage Cultivator    
3 5 20 Plant Sweet Corn    
3 5 20 Fertilizer 20:10:18 168 kg/ha 
3 6 1 Fertilizer 18:46:00 168 kg/ha 
3 8 30 Harvest Sweet Corn    

4 4 30 Tillage MB Plow    
4 4 30 Plant Potato    
4 4 30 Fertilizer 20:10:18 280 kg/ha 
4 6 1 Tillage Mounding    
4 6 15 Fertilizer 18:46:00 112 kg/ha 
4 8 20 Harvest Potato    
5 5 15 Tillage Cultivator    
5 5 20 Plant Snap Beans    
5 5 20 Fertilizer 20:10:18 168 kg/ha 
5 7 15 Harvest Snap Beans    

6 5 15 Tillage Cultivator    
6 5 20 Plant Sweet Corn    
6 5 20 Fertilizer 20:10:18 168 kg/ha 
6 6 15 Fertilizer 18:46:00 168 kg/ha 

6 8 30 Harvest Sweet Corn     
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Appendix D.3 
 

Maps of integrated crop rotations and land management operation used in SWAT. The codes listed 
next to agricultural legend items refer to the codes [e.g., Dairy (301)] used in Appendix D.2. 
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Appendix D.4 
 

We have provided balance sheets that compare manure estimates by county to the total 
amount applied in the SWAT model. Balance sheets were only created for the counties that 
have a sizeable dairy industry within the Wisconsin River Basin (see Figure 1 for locations 
of counties within the basin). SWAT uses dry weight values for manure application, so 
reported values of liquid and solid manure were converted to dry weight values in kg/ha. 
The conversion process required the determination of the dry weight percentages of dry 
manure and liquid manure. Based on previous research 6% dry weight for liquid manure 
and 24% dry weight for solid manure were used (Jokela & Peters, 2009; Laboski & Peters, 
2012; NRCS, 2006). For liquid manure conversions, it was also assumed that there are 8.3 
pounds per every gallon of manure based on the DATCP dairy manure estimation 
calculator. 

We learned from agricultural experts (e.g., county conservations and private agronomists) 
that the general distribution of cattle sizes on a dairy farm is approximately 50% calves and 
heifers (approximately 150–750 lbs.) and 50% lactating and dry adult cows (750–1400 
lbs.). According to the DATCP dairy manure output values from the manure estimation 
calculator and the animal size distribution estimates, the average manure output per dairy 
cow is 16 short tons per acre per year (DATCP, 2000). 
  



 

154 
 

 

MARATHON COUNTY 

CDL Dairy Acres 230,306 
% Daily Haul Acres 0.40 
% Storage Acres 0.60 
% 6-Year Rotation Receiving Manure (corn years) 0.33 
% Dry (Liquid) 0.06 
% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 
DH Application Rate - Corn Years (tons/acre/yr) 25 

DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 

Cattle Census 2010 (head cattle) 139,500 

Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 6,428,160,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 2,579,422,346 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 1,590,379,696 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 4,169,802,042 
    

FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 6,600 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 3,300 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 36,962,361 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 31,707,370 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 68,669,731 
    
GRAZED LANDS ESTIMATE   
Land Area (Acres) 12,349 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 853,562,880 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 6,428,160,000 

CDL Dry Weight (lbs/6-year rotation) 5,092,034,653 
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JUNEAU COUNTY 

 

CDL Dairy Acres 35,951 
% Daily Haul Acres 0.50 
% Storage Acres 0.50 
% 6-Year Rotation Receiving Manure 0.33 

% Dry (Liquid) 0.06 
% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 

DH Application Rate - Corn Years (tons/acre/yr) 25 
DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 
Cattle Census 2010 (head cattle) 28,000 
Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 1,290,240,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 503,307,220 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 206,880,838 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 710,188,058 
    
FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 1,977 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 989 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 13,840,388 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 7,915,120 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 21,755,508 
    
GRAZED LANDS ESTIMATE   
Land Area (Acres) 7,500 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 518,400,000 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 1,290,240,000 

CDL Dry Weight (lbs/6-year rotation) 1,250,343,566 
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LINCOLN COUNTY 

 

CDL Dairy Acres 26,551 

% Daily Haul Acres 0.33 
% Storage Acres 0.67 
% 6-Year Rotation Receiving Manure 0.33 
% Dry (Liquid) 0.06 
% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 
DH Application Rate - Corn Years (tons/acre/yr) 25 
DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 
Cattle Census 2010 (head cattle) 12,500 
Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 576,000,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 247,813,598 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 203,724,019 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 451,537,617 
    
FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 889 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 444 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 4,147,213 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 4,743,463 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 8,890,676 
    
GRAZED LANDS ESTIMATE   
Land Area (Acres) 1,000 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 69,120,000 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 576,000,000 

CDL Dry Weight (lbs/6-year rotation) 529,548,293 
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SAUK COUNTY 

 

CDL Dairy Acres 84,694 

% Daily Haul Acres 0.85 
% Storage Acres 0.15 
% 6-Year Rotation Receiving Manure 0.33 
% Dry (Liquid) 0.06 
% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 
DH Application Rate - Corn Years (tons/acre/yr) 25 
DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 
Cattle Census 2010 (head cattle) 82,000 
Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 3,778,560,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 2,015,718,453 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 146,214,119 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 2,161,932,572 
    
FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 16,223 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 8,111 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 193,052,662 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 19,483,069 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 212,535,731 
    
GRAZED LANDS ESTIMATE   
Land Area (Acres) 5,000 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 345,600,000 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 3,778,560,000 

CDL Dry Weight (lbs/6-year rotation) 2,720,068,303 
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ADAMS COUNTY 

 

CDL Dairy Acres 23,507 
% Daily Haul Acres 0.40 
% Storage Acres 0.60 
% 6-Year Rotation Receiving Manure 0.33 
% Dry (Liquid) 0.06 

% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 
DH Application Rate - Corn Years (tons/acre/yr) 25 
DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 
Cattle Census 2010 (head cattle) 11,000 
Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 506,880,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 263,274,523 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 162,325,668 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 425,600,192 
    
FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 3,369 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 1,685 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 18,869,195 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 16,186,534 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 35,055,729 
    
GRAZED LANDS ESTIMATE   
Land Area (Acres) 500 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 34,560,000 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 506,880,000 

CDL Dry Weight (lbs/6-year rotation) 495,215,921 
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WOOD COUNTY 

 

CDL Dairy Acres 72,992 
% Daily Haul Acres 0.40 
% Storage Acres 0.60 
% 6-Year Rotation Receiving Manure 0.33 
% Dry (Liquid) 0.06 

% Dry (Solid) 0.24 
Pounds manure per gallon liquid 8.34 

Storage Application Rate - Corn Years (ga/acre/yr) 10,000 
Storage Application Rate - 1st Year Alfalfa (ga/acre/yr) 3,000 
DH Application Rate - Corn Years (tons/acre/yr) 25 
DH Application Rate - 1st Year Alfalfa (tons/acre/yr 8 
Cattle Census 2010 (head cattle) 45,500 
Avg. manure output per year (tons/cow) 16 
    
Census Dry Weight Output (lbs/6-year rotation) 2,096,640,000 
    
FROM DAIRY CDL PIXELS   

CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 817,513,998 
CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 504,049,934 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 1,321,563,932 
    
FROM CONTINUOUS CORN CDL PIXELS   
Total Continuous Corn (Acres) 3,275 
% Cont. Corn Assumed to be Dairy (Acres) 0.50 
Dairy from Cont. Corn pixels (Acres) 1,637 
CDL Rotation Dry Weight Total from DH (lbs/6-year rotation) 18,337,405 

CDL Rotation Dry Weight Total from Storage (lbs/6-year rotation) 15,730,350 
CDL Rotation Dry Wright Total from DH & Storage (lbs/6-year rotation) 34,067,755 
    
FROM MANAGED GRAZED LANDS   
GRAZED LANDS ESTIMATE (Acres) 3,000 
Dry Weight Output - Assuming 1.5 cows per acre (lbs/6-year rotation) 207,360,000 
    

RESULTS   
NASS Census Dry Weight (lbs/6-year rotation) 2,096,640,000 

CDL Dry Weight (lbs/6-year rotation) 1,562,991,687 
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Appendix D.5 
Monthly TSS and TP loads were estimating using an empirical model within Fluxmaster 
software (Schwarz et al., 2006). The Fluxmaster modeling process for the WRB is described 
in Section 5.2.3. To interpret the performance of the load estimation models, we have 
included information about each site and measures of accuracy in Table 8 and Table 9. This 
appendix includes more detailed information about each model for each site, specifically 
the values of each fitted coefficient, and the p-values associated with the fit of each 
coefficient. Models were fit according to a 5 or 7-parameter model structure template. The 
5 and 7-parameter models are structured as follows: 

�̃�𝑡 = 𝛾0 + 𝛾𝑞�̃�𝑡 + 𝛾𝑇𝑇𝑡 + 𝛾𝑆 sin(2𝜋𝑇𝑡) + 𝛾𝑐 cos(2𝜋𝑇𝑡) + 𝑒𝑡 

�̃�𝑡 = 𝛾0 + 𝛾𝑞�̃�𝑡 + 𝛾𝑞2�̃�𝑡
2 + 𝛾𝑇𝑇𝑡 + 𝛾𝑇2𝑇𝑡

2 + 𝛾𝑆 sin(2𝜋𝑇𝑡) + 𝛾𝑐 cos(2𝜋𝑇𝑡) + 𝑒𝑡, 

where at time 𝑡, �̃�𝑡 is the concentration of a chemical constituent,  �̃�𝑡 is the log daily 
streamflow, 𝑇𝑡 is the decimal time with whole numbers representing the year, and the 
decimal numbers representing the fraction of the year. The coefficients, 𝛾0, 𝛾𝑞 , 𝛾𝑞2 , 𝛾𝑇, 𝛾𝑇2 , 

𝛾𝑆, and 𝛾𝑐 are estimated and 𝑒𝑡 represents the residual error. The coefficient values and 
their associated p-values are listed here. 
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D.5.1 TSS 
 

Station Name Intercept Flow Flow Squared Sine Cosine Trend Trend Squared 

𝛾0 p 𝛾𝑞 p 𝛾𝑞2 p 𝛾𝑆 p 𝛾𝑐 p 𝛾𝑇 p 𝛾𝑇2 p 

Baraboo River at Main Street, Reedsburg, WI -0.002 0.999 0.577 0.001 – – -0.012 0.918 -0.773 0.000 – – – – 
Baraboo River near Baraboo, WI -0.380 0.375 0.580 0.000 – – 0.041 0.526 -1.188 0.000 -0.027 0.015 – – 
Big Eau Pleine River at Big Eau Pleine Dam 2.293 0.000 -0.075 0.126 – – -0.335 0.000 -0.817 0.000 – – – – 
Big Eau Pleine River at Stratford, WI 2.365 0.000 -0.579 0.000 0.091 0.018 -0.387 0.000 -1.282 0.000 – – – – 
Big Rib River at Rib Falls, WI -1.327 0.076 0.416 0.000 – – -0.198 0.108 -0.882 0.000 0.014 0.856 – – 
Big Roche a Cri Creek at Hwy 21 0.384 0.639 0.118 0.501 – – -0.059 0.534 -0.629 0.000 -0.037 0.613 – – 
Eau Claire River at Kelly, WI -1.382 0.003 0.502 0.000 – – -0.054 0.589 -0.693 0.000 – – – – 
Fenwood Creek at Bradley, WI 1.164 0.000 -0.008 0.890 0.036 0.007 -0.050 0.704 -0.940 0.000 -0.127 0.108 -0.193 0.009 
Freeman Creek at Halder, WI 1.188 0.000 0.152 0.105 – – 0.001 0.998 -0.600 0.001 -0.079 0.403 – – 
Lemonweir at New Lisbon 2.456 0.000 -0.104 0.032 – – 0.044 0.519 -0.178 0.006 – – – – 
Little Eau Pleine River near Rozellville, WI 2.184 0.000 -0.070 0.265 – – -0.179 0.177 -0.829 0.000 -0.307 0.001 – – 
Mill Creek at County Hwy PP 0.599 0.019 0.097 0.129 – – -0.006 0.966 -0.809 0.000 -0.099 0.273 – – 
Mill Creek near Hewitt, WI 1.370 0.014 0.583 0.002 – – 0.234 0.356 -0.343 0.299 – – – – 
Mill Creek near Junction City, WI 2.631 0.001 -0.138 0.368 – – -0.196 0.372 -1.100 0.000 – – – – 
Pine River at Center Avenue near Merrill, WI -1.245 0.001 0.459 0.000 – – -0.012 0.929 -0.417 0.007 -0.199 0.025 – – 
Plover River at Hwy 10/66 -10.483 0.078 4.561 0.044 -0.442 0.039 0.309 0.000 -0.753 0.000 0.031 0.601 -0.023 0.711 
Prairie River near Merrill, WI -7.895 0.053 3.016 0.041 -0.235 0.073 0.188 0.136 -0.455 0.001 – – – – 
Ten Mile Creek near Nekoosa -0.706 0.254 0.535 0.001 – – 0.524 0.000 -0.351 0.002 – – – – 
West Branch of Baraboo River at Hillsboro, WI 1.762 0.000 0.378 0.018 – – -0.177 0.122 -0.798 0.000 – – – – 
Wisconsin River at Merrill, WI 1.267 0.052 0.020 0.815 – – -0.172 0.002 -0.671 0.000 -0.024 0.038 – – 
Wisconsin River at Rhinelander 2.553 0.002 -0.264 0.034 – – -0.221 0.000 -0.286 0.000 – – – – 
Wisconsin River at Wisconsin Dells 1.235 0.138 0.080 0.416 – – -0.344 0.000 -0.839 0.000 -0.020 0.130 – – 
Wisconsin River at Wisconsin Rapids -0.761 0.261 0.337 0.000 – – -0.579 0.000 -0.997 0.000 – – – – 
Yellow River at Babcock 1.647 0.000 0.174 0.001 – – -0.246 0.017 -0.806 0.000 – – – – 
Yellow River at Hwy 21 2.944 0.000 -0.071 0.227 – – -0.221 0.029 -0.780 0.000 -0.110 0.108 – – 
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D.5.2 TP 
 

Station Name 
Intercept Flow Flow Squared Sine Cosine Trend Trend Squared 

𝛾0 p 𝛾𝑞 p 𝛾𝑞2 p 𝛾𝑆 p_b_sin 𝛾0 p 𝛾𝑞 p 𝛾𝑞2 p 

Baraboo River at Main Street, Reedsburg, WI -4.606 0.000 0.480 0.000 – – -0.157 0.009 -0.348 0.000 – – – – 
Baraboo River near Baraboo, WI -4.129 0.000 0.382 0.000 – – -0.101 0.004 -0.460 0.000 -0.025 0.000 – – 
Big Eau Pleine River at Big Eau Pleine Dam -2.609 0.000 0.043 0.169 – – -0.040 0.482 -0.331 0.000 – – – – 
Big Eau Pleine River at Stratford, WI -2.075 0.000 0.185 0.000 – – -0.218 0.000 -0.538 0.000 -0.053 0.000 – – 
Big Rib River at Rib Falls, WI -0.684 0.773 0.374 0.112 -0.009 0.667 -0.130 0.031 -0.324 0.000 -0.965 0.124 0.062 0.159 
Big Roche a Cri Creek at Hwy 21 -6.103 0.090 0.930 0.535 -0.080 0.608 -0.052 0.384 -0.131 0.025 -0.033 0.453 0.020 0.643 
Eau Claire River at Kelly, WI -4.787 0.000 0.377 0.000 – – 0.045 0.486 -0.170 0.010 -0.007 0.707 – – 
Fenwood Creek at Bradley, WI -2.554 0.000 -0.038 0.294 0.036 0.000 -0.165 0.016 -0.532 0.000 -0.065 0.075 -0.043 0.205 
Freeman Creek at Halder, WI -2.744 0.000 -0.172 0.262 0.059 0.044 -0.132 0.122 -0.363 0.000 0.030 0.751 -0.046 0.315 
Lemonweir at New Lisbon -2.718 0.000 0.090 0.024 – – -0.039 0.464 -0.220 0.000 – – – – 
Little Eau Pleine River near Rozellville, WI -1.980 0.000 0.203 0.005 -0.020 0.024 -0.173 0.001 -0.338 0.000 -0.041 0.254 0.041 0.282 
Mill Creek at County Hwy PP -2.455 0.000 0.148 0.000 – – -0.160 0.008 -0.350 0.000 -0.040 0.311 – – 
Mill Creek near Hewitt, WI -0.766 0.008 -0.007 0.935 – – 0.023 0.855 -0.080 0.642 – – – – 
Mill Creek near Junction City, WI -1.597 0.001 0.023 0.807 – – -0.008 0.948 -0.505 0.002 – – – – 
Pine River at Center Avenue near Merrill, WI -5.127 0.000 0.615 0.005 -0.035 0.132 -0.016 0.763 -0.110 0.047 -0.129 0.001 0.048 0.239 
Plover River at Hwy 10/66 -5.566 0.000 0.379 0.000 – – 0.079 0.127 -0.406 0.000 0.016 0.641 – – 
Prairie River near Merrill, WI -8.735 0.000 1.864 0.004 -0.140 0.016 0.095 0.061 -0.127 0.015 – – – – 
Spirit River at Spirit  Falls -3.215 0.000 0.115 0.039 – – 0.080 0.485 -0.205 0.071 – – – – 
Spirit River at Spirit River Dam -2.896 0.000 0.018 0.522 – – -0.235 0.000 -0.041 0.349 – – – – 
Ten Mile Creek near Nekoosa -4.012 0.000 0.237 0.000 – – 0.140 0.001 -0.211 0.000 – – – – 
West Branch of Baraboo River at Hillsboro, WI -2.952 0.000 0.274 0.075 – – 0.080 0.471 -0.310 0.006 – – – – 
Wisconsin River at Castle Rock Dam -4.695 0.000 0.223 0.000 – – -0.208 0.000 -0.189 0.000 – – – – 
Wisconsin River at Chuck's Landing -3.918 0.000 0.153 0.000 – – -0.097 0.007 -0.223 0.000 – – – – 
Wisconsin River at Herb Mitchell Landing -2.313 0.000 -0.074 0.053 – – -0.053 0.020 -0.142 0.000 – – – – 
Wisconsin River at Lake DuBay Dam -3.385 0.000 0.120 0.002 – – -0.113 0.005 -0.221 0.000 -0.027 0.081 – – 
Wisconsin River at Merrill, WI -3.902 0.000 0.132 0.000 – – -0.050 0.044 -0.144 0.000 0.008 0.098 – – 
Wisconsin River at Nekoosa Dam -3.389 0.000 0.116 0.002 – – -0.075 0.054 -0.259 0.000 – – – – 
Wisconsin River at Petenwell Dam -2.630 0.000 0.028 0.559 – – -0.213 0.000 -0.248 0.000 -0.056 0.004 – – 
Wisconsin River at Rainbow Lake -0.762 0.453 -0.440 0.011 – – -0.205 0.005 -0.048 0.481 – – – – 
Wisconsin River at Rhinelander -3.652 0.000 0.030 0.680 – – -0.058 0.077 -0.096 0.006 – – – – 
Wisconsin River at Rothschild, WI -4.620 0.000 0.235 0.000 – – -0.132 0.000 -0.168 0.000 – – – – 
Wisconsin River at Stevens Point Dam -3.823 0.000 0.148 0.000 – – -0.119 0.000 -0.281 0.000 – – – – 
Wisconsin River at Wausau Dam -4.585 0.000 0.230 0.000 – – -0.087 0.025 -0.117 0.003 – – – – 
Wisconsin River at Wisconsin Dells -3.914 0.000 0.150 0.000 – – -0.084 0.003 -0.270 0.000 -0.017 0.001 – – 
Wisconsin River at Wisconsin Rapids -3.297 0.000 0.101 0.000 – – -0.061 0.028 -0.266 0.000 -0.017 0.002 – – 
Wisconsin River below Prairie du Sac Dam -4.163 0.000 0.165 0.020 – – -0.204 0.002 -0.304 0.000 -0.013 0.754 – – 
Yellow River at Babcock -1.420 0.000 -0.163 0.252 0.025 0.098 -0.183 0.030 -0.285 0.000 – – – – 
Yellow River at Hwy 21 -3.744 0.054 0.303 0.032 -0.016 0.196 -0.108 0.029 -0.271 0.000 0.119 0.815 -0.011 0.759 
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Appendix D.6 
 

Figures showing simulated and observed streamflow, TSS, and TP loads over time can be 
useful for assessing accuracy as well as diagnosing specific temporal issues with a model. 
For each gage site listed in Table 13, we have include these temporal plots, each with two 
sets of observed streamflow or load and two sets of simulated streamflow or load. The 
observation set is split into calibration sets (blue) and those that were set aside for either 
quantitative validation or other qualitative assessment of accuracy (green). The simulation 
set is split into the original SWAT calibration results (red) and the final model results 
adjusted for routing and bias correction (black).  
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D.6.1 Streamflow 
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D.6.2 Total Suspended Solids 
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D.6.3 Total Phosphorus 
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